面试
和面试相关的分享
NeverMoreH
^_^
展开
-
正则化和范数
目录预备知识L0范数L1正则化L2正则化为什么参数越小越好 预备知识 在深度学习中,模型的参数优化可以看做最大后验估计,损失函数即为似然函数。所谓正则化,可以视为给予了模型参数估计的一个先验知识。而似然函数*先验信息即为最大后验估计。 θ∗=argmaxθ(∏iP(Yi∣Xi,θ)∏iP(θi))=argminθ(∑i∣∣f(Xi)−Yi∣∣2+∑ilnP(θi))\theta^*=argmax_{\theta}(\prod_i P(Y_i|X_i,\theta)\prod_i P(\theta_i))=a原创 2020-05-18 18:20:50 · 570 阅读 · 0 评论 -
过拟合、欠拟合的原因和解决办法
目录偏差和方差过拟合原因解决办法欠拟合原因解决办法 偏差和方差 偏差用来描述模型输出结果的期望和样本真实结果的差距。 方差用来描述模型对于给定值的输出稳定性。 具体的可以看下图: 过拟合指的就是高方差,欠拟合则是高偏差。 过拟合 原因 模型的复杂度(维度)过高。 模型拟合了数据集中的噪声。 数据集太小,无法了解其真实分布。 模型的迭代次数过多。 解决办法 增加训练数据,做数据增强。 降低模型复杂度。 减少特征数。 添加正则化约束。 使用BN。 使用DropOut 提前结束训练。 欠拟合 原因原创 2020-05-18 17:52:17 · 2657 阅读 · 0 评论 -
Batch Normalization的作用及原理
目录声明BN是什么为什么提出BNBN的作用及原因加速训练,提高收敛速度缓解梯度消失(梯度爆炸)缓解过拟合 声明 由于学习本篇博客的内容时翻阅了很多资源,如知乎、他人博客等,很多内容已经不记得是在哪学到的了,也没有办法一一列举了,如有侵权,请联系我删除,谢谢。 BN是什么 BN是谷歌在这篇文章中提出的。 为什么提出BN BN的作用及原因 加速训练,提高收敛速度 缓解梯度消失(梯度爆炸) 缓解过拟合 ...原创 2020-05-18 11:19:06 · 1676 阅读 · 0 评论 -
计算机视觉 - 知识点总结(面试、笔试)
目录简历内容Faster RCNN整体流程各个层常见cv面试题 简历内容 Faster RCNN 整体流程 各个层 常见cv面试题原创 2019-09-15 15:52:26 · 3878 阅读 · 0 评论