目标跟踪
NeverMoreH
^_^
展开
-
CVPR 2019 GCT:《Graph Convolutional Tracking》论文笔记
目录简介动机贡献方法实验理解出错之处忘不吝指正。简介本文出自中科院自动化所,模式识别国重。文章链接代码链接动机使用Siamese结构做目标跟踪一直存在一个问题,即:当目标被遮挡、形变或其他原因,导致跟丢后,无法重新跟踪。作者认为,传统的SiamTrackers没有考虑时空连贯性。贡献本文是第一个在Siamese结构下使用图卷积做目标跟踪的方法,模型可以端到端的训练。作者在Siamese网络中设计了ST-GCN和CT-GCN结构,前者可以对目标的时空信息进行建模,后者可以利用当前帧的原创 2020-05-22 18:03:04 · 928 阅读 · 0 评论 -
CVPR 2019 ATOM:《ATOM: Accurate Tracking by Overlap Maximization》论文笔记
目录简介动机贡献方法实验理解出错之处忘不吝指正。简介本文是MD在ECO系列之后的新paper,CVPR2019的oral,文章质量很高。文章链接代码链接动机目前,目标跟踪领域的研究重点集中于分类准确度,这导致目标分类效果好的模型,目标估计(target state estimation)低于预期,相反一些以前的模型能够获得更好的目标估计效果,但这些模型的目标分类效果差。贡献本文提出了一种新颖的跟踪架构,由目标估计和目标分类两部分组成。在目标估计网络部分引入了IoU-Net(出自E原创 2020-05-22 15:51:38 · 542 阅读 · 0 评论 -
Visual Tracking:运行ECO模型的GPU版本
我之前发表过一片博客https://blog.csdn.net/ms961516792/article/details/81219707,写的是如何运行ECO模型,但是GPU版本跑不起来,今天又试了一下,发现了问题所在,并解决之。 实际上,在运行install脚本的时候,matlab就已经报错了,如下:Version 7.5 of the CUDA toolkit could no...原创 2018-09-18 19:59:53 · 1571 阅读 · 8 评论 -
ECCV 2018 DaSiamRPN:《Distractor-aware Siamese Networks for Visual Object Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做DaSiamRPN。本文首先分析了已有的孪生网络方法中的特征和缺点,如下图所示: 如上图所示,是几种孪生模型对ROI提取出的特征图。论文中提到,造成这种现象的原因是,在目标周围的背景信息中,非语义背景(即真正的“背景”信息,如地板、天空等)占据了主要部分,语义背景(背景中的人、狗等实体,我是这么理解的)占据了极少一部分。这种不平衡的分布使得...原创 2018-09-10 09:37:26 · 6438 阅读 · 5 评论 -
ECCV 2018 DSLT:《Deep Regression Tracking with Shrinkage Loss》论文笔记
理解出错之处望不吝指正。 本文模型叫做DSLT,将跟踪任务视为回归问题去解决。主要贡献包括:①.提出一种收缩损失函数,降低背景信息中的那些简单负样本对损失函数的贡献;②.使用残差连接,融合多个卷积层和特征图。具体的网络结构如下图所示: 在上图中,红色虚线左侧是特征提取层,文中采用的是VGG-16。右侧是回归网络,使用第一帧进行训练,并逐帧更新。 收缩损失函数 ...原创 2018-09-12 09:46:47 · 2015 阅读 · 0 评论 -
CVPR 2017 CA:《Context-Aware Correlation Filter Tracking》论文笔记
理解出错之处望不吝指正。 本文中提到,待跟踪物体周围的环境对跟踪性能有很大的影响。如果当前周围特别杂乱,想要完成高质量的跟踪,context信息就显得十分重要了。作者提出了CA模型(其实可以当做一个模块,因为可以将其加入任何CF based tracker),可以在CF tracker中显示的结合global context。 本文CF和传统CF的对比图如下: ...原创 2018-08-17 11:36:21 · 3373 阅读 · 2 评论 -
CVPR 2018 HP:《Hyperparameter Optimization for Tracking with Continuous Deep Q-Learning》论文笔记
理解出错之处望不吝指正。 找到一篇之前漏下的论文,怕忘了,先放在这。原创 2018-08-19 21:13:32 · 711 阅读 · 0 评论 -
ECCV 2012 KCF/DCF:《High-speed tracking with kernelized correlation filters》论文笔记
理解出错之处望不吝指正。 本文模型就是大名鼎鼎的KCF/DCF。 本文在CSK的基础上进行了一些改进,大致如下: (1)不像CSK中使用的是灰度特征,本文使用HOG特征; (2)使用HOG特征+高斯核函数的模型叫做KCF; (3)使用HOG特征+线性核函数的模型叫做DCF。 KCF的效果比DCF好一点点,但是DCF比KCF要更快。 ...原创 2018-08-08 19:41:17 · 2467 阅读 · 2 评论 -
ECCV 2012 CSK:《Exploiting the circulantstructure of tracking-by-detection with kernels》论文笔记
理解出错之处望不吝指正。 本文模型就是大名鼎鼎的CSK。 本文的贡献: (1)稠密采样、循环移位; (2)循环矩阵带来的快速计算; (3)计算了不同的核函数的封闭解。. 稠密采样、循环移位 如上图所示,以往的方法中,采用的都是随机采样,作者说这会带来很大的冗余,并且只使用到了bbox的局部特征。而作者提出的稠密采样可以...原创 2018-08-08 11:01:34 · 2464 阅读 · 0 评论 -
CVPR 2018 《High-speed Tracking with Multi-kernel Correlation Filters》论文笔记
本文是一篇基于相关滤波的文章,提出了一种不同于MKCF的multi-kernel learning(MKL)方法,做到了更快更好。 CF的paper真的好难懂(连个图都没有)。。。通篇公式推导,日后再细看,先放在这记录一下。...原创 2018-08-03 14:07:03 · 1416 阅读 · 1 评论 -
CVPR 2018 RASNet:《Learning Attentions: Residual Attentional Siamese Network for Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做RASNet,在Siamese框架下重构了CF,提出了三种attention机制(general、residual、channel),这三种attention的提出使得离线训练的特征表示可以适应在线跟踪的目标,同时避免过拟合。 传统的Siamese使用f(z, x)函数对跟踪目标z和search image x进行评价: ...原创 2018-08-03 14:04:46 · 1505 阅读 · 3 评论 -
ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做MemTrack。本文的模型是基于相似学习的,主要有两个创新点:①.设计一个动态记忆网络;②.使用门控剩余模板和初始模板,生成最终的匹配模板。模型的整体架构如下: 大致流程 ①.对当前帧,使用上一帧的预测位置进行剪裁,得到搜索区域; ②.对进行特征提取,这里特征提取模块使用和SiamFC一样的结构; ③.使用注意力...原创 2018-09-17 10:16:02 · 1196 阅读 · 0 评论 -
视频中的目标检测与跟踪综述
理解出错之处望不吝指正。 这是选题阶段整理出的一个综述形式的PPT,其中有些内容都是在别的地方摘抄的,在最后一页PPT中列出了所有的参考文献。...原创 2018-09-13 09:15:52 · 12031 阅读 · 8 评论 -
ECCV 2018 《Triplet Loss in Siamese Network for Object Tracking》论文笔记
       理解出错之处望不吝指正。       文章链接模型概况       模型结构如下图所示:    &原创 2018-12-04 09:33:54 · 2847 阅读 · 0 评论 -
ECCV 2018 StructSiam:《Structured Siamese Network for Real-Time Visual Tracking》论文笔记
目录整体结构创新点实验结果 理解出错之处望不吝指正。 文章链接整体结构 本文的模型结构如下图所示:创新点 本文的改进我觉得十分新颖:“每张特征图学习跟踪目标的一个原创 2018-12-04 19:29:29 · 2089 阅读 · 2 评论 -
基于相似学习的目标跟踪方法
目录SiameseFC:ECCV2016SINT:CVPR2016CFNet:CVPR2017DSiam:ICCV2017EAST: ICCV2017SA-Siam:CVPR2018SiamRPN:CVPR2018SINT++:CVPR2018RASNet:CVPR2018DaSiamRPN:ECCV2018StructSiam:ECCV2018Siam-tri:ECCV2018&am原创 2018-11-29 19:08:43 · 3741 阅读 · 1 评论 -
ICCV 2017 CREST:《CREST: Convolutional Residual Learning for Visual Tracking》论文笔记
目录动机主要贡献整体框架详细介绍实验结果动机       本文基于DCF进行改进,摘要中提到,基于DCF的跟踪器无法受益于端到端的训练。主要贡献       理解出错之处望不吝指正。      &原创 2018-10-24 17:32:11 · 823 阅读 · 0 评论 -
ICCV 2015 《Understanding and Diagnosing Visual Tracking Systems》论文笔记
目录写在前面文章大意一些benchmark实验实验设置基本模型数据集实验1 Featrue Extractor实验2 Observation Model实验3 Motion Model实验4 Model Updater实验5 Ensemble Post-processor结论写在前面 今天打开csdn,想写这篇博客的时候,发现,哇,Markd...原创 2018-10-19 16:02:56 · 376 阅读 · 0 评论 -
CVPR 2016 SINT:《Siamese Instance Search for Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做SINT,和Siamese-fc一样,通过相似学习解决跟踪问题(这篇论文的发表时间比Siamese-fc早)。模型的整体结构如下: 跟踪过程 模型分为两路,左侧为“Query stream”(接收第一帧的bbox),右侧为“Search stream”(接收第t帧的candidate boxes),在跟踪的过程中,根据下...原创 2018-10-16 14:40:46 · 3853 阅读 · 0 评论 -
MATLAB入门级知识
要入坑MATLAB了。 老年人的记忆力伤不起,还是记下来方便以后查阅。 主要分为三部分:数据类型、可视化、程序设计。 数据类型 MATLAB中的数据类型主要包括字符型(char)、整型(int8、int16、int32、int64、uint8、...、uint64)、浮点(single、double)、元胞型(cell)和结构体型(structure)。 ...原创 2018-09-11 10:39:27 · 430 阅读 · 0 评论 -
CVPR 2018 MCCT:《Multi-Cue Correlation Filters for Roubust Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫MCCT,使用多个独立的基于DCF的expert进行跟踪,在每一帧中选择当前最优的expert,将其结果作为当前帧的跟踪结果。 文中使用了7个expert,每个expert使用不同的特征。 针对某一帧,使用pair-evaluation和self-evaluation的加权和对每个expert进行打分,从而选择出最优的exp...原创 2018-08-03 14:02:44 · 3639 阅读 · 0 评论 -
在Ubuntu中使用OTB-50测试ECO模型
1. 在https://github.com/martin-danelljan/ECO中下载ECO模型的源码。解压后将文件夹的名字命名为”ECO“。2. 参照https://blog.csdn.net/lcb_coconut/article/details/76512707下载“Visual Tracker Benchmark v1.0”。3. 将“ECO/runfiles/OTB_HC_...原创 2018-08-03 12:48:41 · 2492 阅读 · 12 评论 -
CVPR 2018 《Correlation Tracking via Joint Discrimination and Reliability Learning》论文笔记
这篇论文还没太读懂,先mark。原创 2018-08-04 21:28:58 · 832 阅读 · 0 评论 -
CVPR 2018 SA-Siam:《A Twofold Siamese Network for Real-Time Object Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做SA-Siam。本文提出了一个结合Semantic features(语义特征)和Appearance features(表征特征)的模型,其实类似于一个双路模型,为了保持这两种特征的异质性,这两路特征要分别训练,训练语义特征的网络叫做S-Net,训练表征特征的网络叫做A-Net。作者还在S-Net中加入了一个chanel attention机制。...原创 2018-08-04 21:13:38 · 1358 阅读 · 2 评论 -
CVPR 2018 LSART:《Learning Spatial-Aware Regressions for Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做LSART。本模型主要分为两条线:(1).Spatial-Aware KRR;(2).Spatial-Aware CNN。 Spatial-Aware KRR:KRR with Cross-Patch Similarity(KRRCPS) 传统的岭回归: 根据representer theorem(表示定理),这个...原创 2018-08-04 20:41:12 · 1374 阅读 · 0 评论 -
CVPR 2018 Siam-RPN:《High Performance Visual Tracking with Siamese Region Proposal Network》论文笔记
理解出错之处望不吝指正。 本文模型叫做Siam-RPN。本文将Siamese Network和RPN结合,提出了一种端到端的离线训练方法,并把tracking过程视为one-shot detection(单项学习)。 训练阶段的网络结构如下: tracking阶段的网络结构如下: tracking过程中,先使用第一帧在template branch中预...原创 2018-08-04 18:22:13 · 2100 阅读 · 2 评论 -
CVPR 2018 DEDT:《Efficient Diverse Ensemble for Discriminative Co-Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做DEDT,是一个集成判别器。作者提到,以往的集成判别器中,每个判别器之间学到的东西之间存在过多的冗余信息,本文提出一种online ensemble tracker,可以针对集成集合中的每个tracker生成人造样本,不同tracker之间使用的样本具有差异性。 本文中每一个tracker均为基于HOG特征的kd-tree-based KNN分...原创 2018-08-04 17:51:21 · 944 阅读 · 0 评论 -
CVPR 2018 TRACA:《Context-aware Deep Feature Compression for High-speed Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文的模型叫做TRACA。模型中使用多个expert auto-encoder,在预训练阶段,每个expert auto-encoder针对一个特定类进行训练;在tracking阶段,对于给定的跟踪目标,只使用最优的expert auto-encoder。 在expert auto-encoder的预训练阶段,首先使用所有的训练样本训练出,对所有样本...原创 2018-08-04 16:25:30 · 1802 阅读 · 0 评论 -
CVPR 2018 SINT++:《SINT++: Robust Visual Tracking via Adversarial Hard Positive Generation》论文笔记
理解出错之处望不吝指正。 本文用到了变分自编码VAE和强化学习DQN,我觉得很新颖。整体架构如下图: 首先,使用VAE来生成positive sample,如上图中右下角。 然后,使用HTPN网络将得到的positive sample变得更加hard,即:添加遮挡。那么问题就来了,(1).我们要遮挡目标物体中的哪部分?(2).用哪部分去遮挡(1)中的部分? 这两个问...原创 2018-08-04 11:47:27 · 1921 阅读 · 0 评论 -
CVPR 2018 STRCF:《Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文提出的模型叫做STRCF。 在DCF中存在边界效应,SRDCF在DCF的基础上中通过加入spatial惩罚项解决了边界效应,但是SRDCF在tracking的过程中要使用到过去的多帧样本,带来了计算消耗。本文提出的STRCF在DCF的基础上加入了spatial和temporal正则项,且tracking过程中只使用上一帧的信息。 SRDCF...原创 2018-08-04 11:24:55 · 5759 阅读 · 4 评论 -
CVPR 2018 FlowTrack:《End-to-end Flow Correlation Tracking with Spatial-temporal Attention》论文笔记
理解出错之处望不吝指正。 本文模型叫做FlowTrack。本文将光流信息和特征表示结合在一起进行目标跟踪,据作者所说,这是第一个在CNN based tracking中使用光流的模型。 光流的warp公式如下(p代表一个2维位置(x,y)): aggregation后得到的结果: 上式中的w是一个自适应权值,由文中提出的spati...原创 2018-08-04 11:05:17 · 1848 阅读 · 1 评论 -
CVPR 2018 VITAL:《VITAL: VIsual Tracking via Adversarial Learning》论文笔记
理解出错之处望不吝指正。 本文模型叫做VITAL。作者提到,当前使用DNN的trackers的性能受限于两方面:(1).每一帧中的positive sample在空间上高度重叠,模型不能和好的捕获较好的appearance variations;(2).positive sample和negative sample的数量及其不平衡。为了处理这两个问题,作者提出了使用对抗学习的VITAL模...原创 2018-08-04 21:33:08 · 1128 阅读 · 1 评论 -
CVPR 2017 SANet:《SANet: Structure-Aware Network for Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做SANet。作者在论文中提到,CNN模型主要适用于类间判别,对于相似物体的判别能力不强。作者提出使用RNN对目标物体的self-structure进行建模,用于提升模型的鉴别相似物体的能力。模型的整体结构如下: 从图中我们可以看出,作者的主要创新点分为以下几部分: (1)使用RNN提升模型鉴别相似物体的能力; (2)在不...原创 2018-08-09 15:04:02 · 6319 阅读 · 0 评论 -
CVPR 2010 MOSSE:《Visual Object Tracking using Adaptive Correlation Filters.》论文笔记
理解出错之处望不吝指正。 本文模型就是大名鼎鼎的MOSSE,是CF在tracking的开篇之作。 什么是CF? 本段部分摘自百度百科。 两个函数互相关的含义是:对两个函数分别作复数共轭和反向平移并使其相乘的无穷积分,或者说:第一个函数依次作复共轭和平移后与第二个函数相乘的无穷积分。可以证明,两个定义完全等价(可以互相导出)。从物理上看,互相关运算的结果反映...原创 2018-08-07 21:15:07 · 773 阅读 · 0 评论 -
CVPR 2018 目标跟踪相关论文
这里列出列表,每篇论文会单独写一篇博客。《Multi-Cue Correlation Filters for Roubust Visual Tracking》《Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking》《High-speed ...原创 2018-08-03 10:32:18 · 2784 阅读 · 0 评论 -
CVPR 2017 ADNet:《 Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning》论文笔记
理解出错之处望不吝指正。 本文模型叫做ADNet。该模型通过强化学习产生动作序列(对bbox进行移动or尺度变换)来进行tracking。原理如下图(第一列代表初始帧,第二列和第三列代表通过RL产生的动作序列对object进行tracking): 模型的整体结构如下: 强化学习部分: (1)状态: 状态分为和两部分。其中...原创 2018-08-12 15:07:44 · 4902 阅读 · 2 评论 -
ICCV 2017 DSiam:《Learning Dynamic Siamese Network for Visual Object Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做DSiam。作者提出一个Dynamic Siamese Network,可以使用一个transformation learning model来在线学习目标的外观变化并且压制背景信息。本文的另一个创新点在于作者提出了一个自适应聚合各个层的特征的方法(elementwise multi-layer fusion)。并且,本模型不用像以往的基于Siame...原创 2018-08-07 17:21:53 · 1274 阅读 · 1 评论 -
ICCV 2017 UCT:《UCT: Learning Unified Convolutional Networks forReal-time Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做UCT。就像论文题目一样,作者提出了一个基于卷积神经网络的end2end的tracking模型。模型的整体结构如下图所示(图中实线代表online tracking过程,虚线框内和虚线表示离线训练过程和在第一帧进行训练): 模型的目的是从样本中学习出一系列convolution filter ,则在样本上进行卷积得到的卷积respo...原创 2018-08-06 21:55:16 · 704 阅读 · 1 评论 -
CVPR 2017 ECO:《ECO: Efficient Convolution Operators for Tracking》论文笔记
理解出错之处望不吝指正。 以下内容部分摘自https://zhuanlan.zhihu.com/p/24971525,在这个链接里可以看到公式推导~ 本文模型叫做ECO,是对C-COT模型的改进,出发点是提高时间效率和空间效率。作者分析了模型速度慢的三个原因,也就是本文的动机: (1).模型大小。可以理解为特征的复杂度。比如说C-COT用了CNN+HOG+CN这样非常全面的特...原创 2018-08-06 19:31:15 · 2507 阅读 · 0 评论 -
CVPR 2017 CFNet:《End-to-end representation learning for Correlation Filter based tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做CFNet。作者在论文中提到,以前的工作只是将CF应用到了预训练的CNN特征上,并没有实现端到端的CNN-CF的结合。本文的主要贡献就是:推导了CF的可微闭合解,让CF成为CNN中的一个层,这样CNN-CF就可以end2end training,训练更适合CF tracking的卷积特征。 模型的整体结构基于Siamese Network,如下...原创 2018-08-06 18:54:30 · 1003 阅读 · 0 评论