2018年论文
2018年目标跟踪相关论文
NeverMoreH
^_^
展开
-
CVPR 2018 VITAL:《VITAL: VIsual Tracking via Adversarial Learning》论文笔记
理解出错之处望不吝指正。 本文模型叫做VITAL。作者提到,当前使用DNN的trackers的性能受限于两方面:(1).每一帧中的positive sample在空间上高度重叠,模型不能和好的捕获较好的appearance variations;(2).positive sample和negative sample的数量及其不平衡。为了处理这两个问题,作者提出了使用对抗学习的VITAL模...原创 2018-08-04 21:33:08 · 1128 阅读 · 1 评论 -
CVPR 2018 RASNet:《Learning Attentions: Residual Attentional Siamese Network for Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做RASNet,在Siamese框架下重构了CF,提出了三种attention机制(general、residual、channel),这三种attention的提出使得离线训练的特征表示可以适应在线跟踪的目标,同时避免过拟合。 传统的Siamese使用f(z, x)函数对跟踪目标z和search image x进行评价: ...原创 2018-08-03 14:04:46 · 1505 阅读 · 3 评论 -
CVPR 2018 MCCT:《Multi-Cue Correlation Filters for Roubust Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫MCCT,使用多个独立的基于DCF的expert进行跟踪,在每一帧中选择当前最优的expert,将其结果作为当前帧的跟踪结果。 文中使用了7个expert,每个expert使用不同的特征。 针对某一帧,使用pair-evaluation和self-evaluation的加权和对每个expert进行打分,从而选择出最优的exp...原创 2018-08-03 14:02:44 · 3639 阅读 · 0 评论 -
CVPR 2018 HP:《Hyperparameter Optimization for Tracking with Continuous Deep Q-Learning》论文笔记
理解出错之处望不吝指正。 找到一篇之前漏下的论文,怕忘了,先放在这。原创 2018-08-19 21:13:32 · 711 阅读 · 0 评论 -
CVPR 2018 目标跟踪相关论文
这里列出列表,每篇论文会单独写一篇博客。《Multi-Cue Correlation Filters for Roubust Visual Tracking》《Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking》《High-speed ...原创 2018-08-03 10:32:18 · 2784 阅读 · 0 评论 -
ECCV 2018 DSLT:《Deep Regression Tracking with Shrinkage Loss》论文笔记
理解出错之处望不吝指正。 本文模型叫做DSLT,将跟踪任务视为回归问题去解决。主要贡献包括:①.提出一种收缩损失函数,降低背景信息中的那些简单负样本对损失函数的贡献;②.使用残差连接,融合多个卷积层和特征图。具体的网络结构如下图所示: 在上图中,红色虚线左侧是特征提取层,文中采用的是VGG-16。右侧是回归网络,使用第一帧进行训练,并逐帧更新。 收缩损失函数 ...原创 2018-09-12 09:46:47 · 2015 阅读 · 0 评论 -
ECCV 2018 DaSiamRPN:《Distractor-aware Siamese Networks for Visual Object Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做DaSiamRPN。本文首先分析了已有的孪生网络方法中的特征和缺点,如下图所示: 如上图所示,是几种孪生模型对ROI提取出的特征图。论文中提到,造成这种现象的原因是,在目标周围的背景信息中,非语义背景(即真正的“背景”信息,如地板、天空等)占据了主要部分,语义背景(背景中的人、狗等实体,我是这么理解的)占据了极少一部分。这种不平衡的分布使得...原创 2018-09-10 09:37:26 · 6438 阅读 · 5 评论 -
ECCV 2018 MemTrack:《Learning Dynamic Memory Networks for Object Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做MemTrack。本文的模型是基于相似学习的,主要有两个创新点:①.设计一个动态记忆网络;②.使用门控剩余模板和初始模板,生成最终的匹配模板。模型的整体架构如下: 大致流程 ①.对当前帧,使用上一帧的预测位置进行剪裁,得到搜索区域; ②.对进行特征提取,这里特征提取模块使用和SiamFC一样的结构; ③.使用注意力...原创 2018-09-17 10:16:02 · 1196 阅读 · 0 评论 -
ECCV 2018 StructSiam:《Structured Siamese Network for Real-Time Visual Tracking》论文笔记
目录整体结构创新点实验结果 理解出错之处望不吝指正。 文章链接整体结构 本文的模型结构如下图所示:创新点 本文的改进我觉得十分新颖:“每张特征图学习跟踪目标的一个原创 2018-12-04 19:29:29 · 2089 阅读 · 2 评论 -
CVPR 2018 《High-speed Tracking with Multi-kernel Correlation Filters》论文笔记
本文是一篇基于相关滤波的文章,提出了一种不同于MKCF的multi-kernel learning(MKL)方法,做到了更快更好。 CF的paper真的好难懂(连个图都没有)。。。通篇公式推导,日后再细看,先放在这记录一下。...原创 2018-08-03 14:07:03 · 1416 阅读 · 1 评论 -
CVPR 2018 FlowTrack:《End-to-end Flow Correlation Tracking with Spatial-temporal Attention》论文笔记
理解出错之处望不吝指正。 本文模型叫做FlowTrack。本文将光流信息和特征表示结合在一起进行目标跟踪,据作者所说,这是第一个在CNN based tracking中使用光流的模型。 光流的warp公式如下(p代表一个2维位置(x,y)): aggregation后得到的结果: 上式中的w是一个自适应权值,由文中提出的spati...原创 2018-08-04 11:05:17 · 1848 阅读 · 1 评论 -
CVPR 2018 《Correlation Tracking via Joint Discrimination and Reliability Learning》论文笔记
这篇论文还没太读懂,先mark。原创 2018-08-04 21:28:58 · 832 阅读 · 0 评论 -
CVPR 2018 SA-Siam:《A Twofold Siamese Network for Real-Time Object Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做SA-Siam。本文提出了一个结合Semantic features(语义特征)和Appearance features(表征特征)的模型,其实类似于一个双路模型,为了保持这两种特征的异质性,这两路特征要分别训练,训练语义特征的网络叫做S-Net,训练表征特征的网络叫做A-Net。作者还在S-Net中加入了一个chanel attention机制。...原创 2018-08-04 21:13:38 · 1358 阅读 · 2 评论 -
CVPR 2018 LSART:《Learning Spatial-Aware Regressions for Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做LSART。本模型主要分为两条线:(1).Spatial-Aware KRR;(2).Spatial-Aware CNN。 Spatial-Aware KRR:KRR with Cross-Patch Similarity(KRRCPS) 传统的岭回归: 根据representer theorem(表示定理),这个...原创 2018-08-04 20:41:12 · 1374 阅读 · 0 评论 -
CVPR 2018 Siam-RPN:《High Performance Visual Tracking with Siamese Region Proposal Network》论文笔记
理解出错之处望不吝指正。 本文模型叫做Siam-RPN。本文将Siamese Network和RPN结合,提出了一种端到端的离线训练方法,并把tracking过程视为one-shot detection(单项学习)。 训练阶段的网络结构如下: tracking阶段的网络结构如下: tracking过程中,先使用第一帧在template branch中预...原创 2018-08-04 18:22:13 · 2100 阅读 · 2 评论 -
CVPR 2018 DEDT:《Efficient Diverse Ensemble for Discriminative Co-Tracking》论文笔记
理解出错之处望不吝指正。 本文模型叫做DEDT,是一个集成判别器。作者提到,以往的集成判别器中,每个判别器之间学到的东西之间存在过多的冗余信息,本文提出一种online ensemble tracker,可以针对集成集合中的每个tracker生成人造样本,不同tracker之间使用的样本具有差异性。 本文中每一个tracker均为基于HOG特征的kd-tree-based KNN分...原创 2018-08-04 17:51:21 · 944 阅读 · 0 评论 -
CVPR 2018 TRACA:《Context-aware Deep Feature Compression for High-speed Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文的模型叫做TRACA。模型中使用多个expert auto-encoder,在预训练阶段,每个expert auto-encoder针对一个特定类进行训练;在tracking阶段,对于给定的跟踪目标,只使用最优的expert auto-encoder。 在expert auto-encoder的预训练阶段,首先使用所有的训练样本训练出,对所有样本...原创 2018-08-04 16:25:30 · 1802 阅读 · 0 评论 -
CVPR 2018 SINT++:《SINT++: Robust Visual Tracking via Adversarial Hard Positive Generation》论文笔记
理解出错之处望不吝指正。 本文用到了变分自编码VAE和强化学习DQN,我觉得很新颖。整体架构如下图: 首先,使用VAE来生成positive sample,如上图中右下角。 然后,使用HTPN网络将得到的positive sample变得更加hard,即:添加遮挡。那么问题就来了,(1).我们要遮挡目标物体中的哪部分?(2).用哪部分去遮挡(1)中的部分? 这两个问...原创 2018-08-04 11:47:27 · 1921 阅读 · 0 评论 -
CVPR 2018 STRCF:《Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking》论文笔记
理解出错之处望不吝指正。 本文提出的模型叫做STRCF。 在DCF中存在边界效应,SRDCF在DCF的基础上中通过加入spatial惩罚项解决了边界效应,但是SRDCF在tracking的过程中要使用到过去的多帧样本,带来了计算消耗。本文提出的STRCF在DCF的基础上加入了spatial和temporal正则项,且tracking过程中只使用上一帧的信息。 SRDCF...原创 2018-08-04 11:24:55 · 5759 阅读 · 4 评论 -
ECCV 2018 《Triplet Loss in Siamese Network for Object Tracking》论文笔记
       理解出错之处望不吝指正。       文章链接模型概况       模型结构如下图所示:    &原创 2018-12-04 09:33:54 · 2847 阅读 · 0 评论