opencv 图像处理 最小二乘法 仿射变换 详解

本文详细介绍了在OpenCV中如何利用最小二乘法进行仿射变换,特别是在多点标定情况下,由于getAffineTransform函数只支持三对点,因此需要通过最小二乘法来解决超定系统的仿射变换问题。通过将矩阵A的转置与A相乘,再求逆,并乘以A的转置和b,可以得到仿射变换矩阵的最小二乘解。并给出了C++和OpenCV的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在标定时常用到仿射变换,但Opencv中放射变换仅支持三对点作为参数。遇到需要多点标定的情况则需要最小二乘法的仿射变换了。

原opencv中 获取仿射变换的函数getAffineTransform() 的用法如下

vector<Point2f> sro={Point2f(0,0),Point2f(1,0),Point2f(0,1)};

vector<Point2f> dst{Point2f(0,0),Point2f(10,0),Point2f(0,10)};

Mat AffineTransform=getAffineTransform(sro, dst);

其中得到的AffineTransform就是2x3的仿射变换矩阵。

 

接下来介绍如何获得要最小二乘法的仿射变换矩阵。

若要解 A  x = b 中的x。

使用常规超定矩阵解法 具体如下:

1.两边同时加乘 A^t (A^t表示A的转置)

有:A^t  A x =A^t b

2.使x侧(A^t  A)消去,再增乘(At A)^-1

有 (At  A)^-1 (A^t  A) x=(At  A)^-1 A^t b        

左侧 (At  A)^-1 (A^t  A)消去后

即有:x=(At  A)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值