频谱分析和时频分析

因此,多窗法得到的频谱估计方差小频率分辨率较高

其中x[n]表示信号数据,ap是AR系数,e[n]是随机噪声。

该模型意味着,当前信号数据x[n]是在其之前观测的信号数据x[n-1]的一个线性组合。

而脑电信号的特征与非参数优点相符,所以使用非参数方法更广泛。

  • 频谱分析:将脑电信号从时域转换到频域,从而揭示脑电功率随频率分布的模式。
  • 时频分析:估计事件相关脑电的时变频谱特征,即事件相关同步化/去同步化。

  • 简介
    • 对于脑电信号,尤其是自发的脑电信号,一般在频域进行分析,以刻画信号的周期性特征
    • 使用频谱分析,来描述脑电信号功率沿频率的分布特征。
    • 频谱一般是非稳态的,是随着时间而变化的。
    • 事件相关同步化(ERS)/事件相关去同步化(ERD):事件相关的频谱变化。
      • ERS和ERD通常表示为在时间-频率域中随时间变化的频谱功率,并可以通过时频分析的方法进行估计。
  • 频谱估计
    • 基本概念:
      • 频谱估计
        • 时域信号变换到频域,并可提供信号的功率、幅度或相位等沿频率的分布曲线(即频谱)。
        • 目的:通过观察对应周期的频率峰值来检测信号的周期性。
      • 在脑电的频谱分析中,通常计算一段时间内记录的脑电信号在以下几个特定频段或节律内的功率:δ(1~4Hz),θ(4~8Hz),α(8~12Hz),β(12~20Hz),γ(>20Hz)
      • 频谱估计的基础是傅里叶变换
        • 傅里叶变换将时间序列信号表示为一系列正弦信号和余弦信号的总和
        • 连续时间傅里叶变换CTFT):
          • 连续信号x(t)的傅里叶变换被称为CTFT。
          • 计算公式:
  • 频谱的频率范围0到信号采样率的一半(奈奎斯特频率)。
  • 离散时间傅里叶变换DTFT):
    • 离散时间信号x[n]的傅里叶变换被称为DTFT。
    • 计算公式:
  • 实际采集分析的脑电信号都是一系列离散时间点上的采样。
  • 离散傅里叶变换DFT):
    • 在离散频域点上进行的计算;
    • 计算公式:
  • 为了更有效的计算,DFT通常使用快速傅里叶变换算法FFT)来实现。
    • FFT中,采样点的数量N通常选择为2的幂次方(可通过在原始数据末尾添0来实现)。
  • 功率谱密度PSD
    • 描述随机信号的功率沿频率的分布。
    • 简称为谱密度或功率谱。
  • 周期图
    • 一种简单且流行的频谱估计方法,但对需要进行平滑频谱估计的脑电应用而言,周期图并不适合。(因为周期图的曲线有非常大的方差,因此信号频谱峰值难以被清楚观察和精确定位)
    • 对于采样率为FS的离散时间信号x[n],n=1,2,……,N的周期图计算
  • 其中w[n]是一个窗函数,用于为信号采样分配不同的权重,一般对所有的采样权重都设置为“1”.
  • Matlab中可用脚本“periodogram.m”计算周期图。
  • 周期图有两种不同的尺度:线性尺度对数尺度
    • 线性尺度:可以突出显示主要的频谱峰值,但是会使其他频谱分量(特别是高频分量)难以辨别
    • 对数尺度:可以使不同频段上的频谱分量在视觉上更具可比性,但频谱峰值较难突出
    • 一般对数尺度更常见。
  • 脑电频谱具有“1/f”特性,即功率随着频率的增长而迅速减小。因此,脑电的超低频成分经常主导整个频谱。所以,在脑电频谱估计之前必须执行一个“去趋势”操作。
    • 目的:消除超低频影响
    • 意味着移除信号的总体趋势。
    • 去趋势可在Matlab中使用函数“detrend.m”实现。
  • Welch
    • 为了解决周期图方差过大问题,发展出了Welch
    • 步骤
      • 首先将信号的N个采样分成k个数据段(可重叠),每个数据段包含M个采样,相邻两个数据段有D个采样点重合
      • 然后将数据段加窗,即将数据段点乘一个对称的钟形窗口;
      • 接下来,计算每个加窗数据段的DFT(离散傅里叶变换)并获得其周期图
      • 最后,将所有加窗数据段周期图的平均值作为该信号最终的频谱估计
    • Welch得到的频谱估计的方差是周期图频谱估计方差的1/k
    • Welch法频谱估计可以在Matlab中使用函数“pwelch.m”实现。
    • 频谱估计的方差和k成反比。而数据段的长度M和数据段重叠长度D都会影响k。
      • 首先,M应足够大,以提供必要的频率分辨率;但M太大,会导致k太小,这样无法显著降低频谱估计的方差;
      • 其次,D较大,也会使k较大
    • Welch法用到的窗函数也会影响频谱估计,但对脑电频谱估计的结果影响不大,所以很少讨论。
  • 多窗口法
    • 同Welch法一样,都是通过平均加窗数据的周期图以降低频谱估计的方差;但与Welch法不同的是多窗口法使用了不同的窗口函数,但数据是相同的。
    • 多窗口法使用由一系列正交锥形窗组成的离散长球序列来产生一系列的加窗数据,并计算这些加窗数据周期图的平均值将其作为信号的频谱估计
    • 正交锥形窗的特点
      • 正交性
      • 具有最佳的时频集中特性。
  • 多窗法在Matlab中可使用“pmtm.m”实现。但需指定一个半时带宽乘积nw,它决定了多窗口法频谱估计的频率分辨率。
  • 方差和锥形窗数量成反比
  • 自回归模型(AR
    • 参数类的频谱估计方法首先将所研究的信号使用特定参数模型来描述然后从数据中估计出参数模型最后再从估计的模型参数中计算出信号频谱
    • 用于频谱估计的最常见的模型是自回归模型AR)。
    • 一个阶数为P的AR模型可表示为AR(P),它的公式为
  • 使用Yule-Walker法计算AR系数的自回归频谱估计Matlab中可使用函数“pyulear.m”实现。
  • 不同的模型阶数P,会极大影响AR频谱估计的结果
    • 模型阶数P越高信号剩余未得到解释的方差越小,即模型越准确
    • 过高的P,会增加模型估计的方差
    • 就自回归频谱而言,P过大,频谱估计中有可能出现假峰P过小频率分辨率太低,不足以分辨两个相邻的正弦波。
  • 在信号处理领域,自回归模型阶数设置的经验法则
    • 信噪比非常高时(噪声很小),自回归模型阶数可以设为信号包含的正弦波数量的2
    • 随着信噪比的降低,模型阶数需要更高
  • 频谱估计方法的比较:
    • 非参数方法
      • 仅基于脑电数据估计频谱,不需要模型及其参数等先验知识;
      • 方法简单,但效果强烈依赖数据质量
      • 使用更加广泛
        • 如果频谱本身比较光滑,非参数方法则更合适、合理;
        • 噪声大时,非参数方法更准确;
        • 如果信号长度足够,非参数方法可以得到较准确的频谱估计结果。
  • 参数方法
    • 在统计上的一致性更高,因此对于较短的信号,也可以达到可靠的频谱估计。
    • 不需要加窗操作,所以不存在频谱泄露的问题;
    • 频率分辨率与数据量无关
  • 频谱特征提取:
    • 最常见的脑电频谱特征是特定频段内的频谱功率
    • 为了消除个体之间的差异,也经常使用相对功率作为特征;
    • 频谱峰值的频率、幅度和带宽也是重要的脑电频谱特征。
    • 还可以将脑电信号频谱看作一个随机过程,从中计算其统计值,如平均值、方差和熵等,作为脑电频谱特征。
    • 其他确定自回归模型的阶数的准则:
      • 赤池信息准则(AIC
      • 贝叶斯信息准则(BIC
      • 最终预测误差(FPE
  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值