【机器学习】基于Gumbel Top-k松弛技术的图形采样

1.引言

1.1.Top-k松弛简介

Top-k松弛(Top-k Relaxation)在算法和数据分析领域中是一个常用的概念,主要用于从大量数据中提取前k个最相关或最重要的元素

1.1.1. 定义

Top-k问题指的是在一组元素中找出前k个最大(或最小)的元素。Top-k松弛则是对这一问题的扩展或近似,它允许在求解过程中有一定的灵活性或误差范围。

1.1.2. 核心思想

  • 建堆:使用数据集合中的前k个元素来建立一个堆(通常是最大堆或最小堆)。
  • 比较与调整:将剩余的N-k个元素依次与堆顶元素进行比较。如果某个元素比堆顶元素更“重要”(即更大或更小),则替换堆顶元素,并重新调整堆以保持其性质。
  • 结果:经过比较与调整后,堆中剩余的k个元素即为所求的前k个最大(或最小)的元素。

1.1.3. 实现方式

  • 堆排序:堆排序算法中的AdjustUp和AdjustDown函数用于向上或向下调整堆,以满足堆的性质。
  • 时间复杂度:建堆的时间复杂度通常为O(N),而堆排序的时间复杂度为O(N log N)。但在Top-k问题中,由于只需要找到前k个元素,因此实际的时间复杂度可能会更低。

1.1.4. 应用场景

  • 排名问题:如找出销量最高的k家店铺、效率最高的k个员工等。
  • 软件排行榜:如根据用户评分或下载量来排名软件。
  • 富豪榜:根据财富值来排名富豪。

综合来看,Top-k松弛是一种在大量数据中提取前k个最相关或最重要元素的有效方法。通过建堆、比较与调整等步骤,可以快速找到满足要求的结果。同时,需要根据具体应用场景来选择合适的算法和数据结构来优化性能。

1.2.Top-k的算法基础

本文我们将探讨如何在可微分模型中利用Gumbel Top-k松弛技术实现子集采样的功能。我们首先介绍如何构建一个可微分的子集采样器,接着讨论其在可微分k最近邻分类问题中的应用。

具体来说,假设我们有N个带有权重(w_i)的元素。我们的目标是从这N个元素中无放回地抽取k个元素,即形成一个包含k个元素的子集 S = { w i 1 , w i 2 , … , w i k } S = \{w_{i_1}, w_{i_2}, \ldots, w_{i_k}\} S={ wi1,wi2,,wik}

在已知总权重 Z = ∑ i = 1 N w i Z = \sum_{i=1}^{N} w_i Z=i=1Nwi的情况下,第一个元素被采样的概率是 w i 1 Z \frac{w_{i_1}}{Z} Zwi1,第二个元素是 w i 2 Z − w i 1 \frac{w_{i_2}}{Z - w_{i_1}} Zwi1wi2,依此类推,直到k个元素。将这些概率相乘,我们得到k元素子集的分布公式:

p ( S ) = w i 1 Z ⋅ w i 2 Z − w i 1 ⋅ … ⋅ w i k Z − ∑ j = 1 k − 1 w i j p(S) = \frac{w_{i_1}}{Z} \cdot \frac{w_{i_2}}{Z - w_{i_1}} \cdot \ldots \cdot \frac{w_{i_k}}{Z - \sum_{j=1}^{k-1} w_{i_j}} p(S)=Zwi1Zwi1wi2Zj=1k1wijwik

在之前的介绍中,我们说明了如何将从分类分布中采样的问题转换为选择一组Gumbel随机变量的argmax问题。通过使用softmax函数对argmax进行放松,我们能够近似地从目标分类分布中进行采样。这里的“温度”参数可以用来调节放松的程度。在这种情况下,分类概率由softmax分布给出:

p i = exp ⁡ ( x i ) ∑ j = 1 N exp ⁡ ( x j ) = w i ∑ j = 1 N w j p_i = \frac{\exp(x_i)}{\sum_{j=1}^{N} \exp(x_j)} = \frac{w_i}{\sum_{j=1}^{N} w_j} pi=j=1Nexp(xj)exp(xi)=j=1N

Gumbel-Softmax是一种用于处理离散分布的技术,常用于生成具有类别结构的数据或进行离散采样。以下是使用Gumbel-Softmax的一般步骤: 1. 定义模型架构:首先,你需要定义一个神经网络模型来生成离散分布。这个模型可以是基于MLP、CNN或其他类型的网络结构。 2. 引入Gumbel-Softmax采样:在模型输出层之前,插入一个Gumbel-Softmax层。这个层将连续的Gumbel分布转换为离散分布。Gumbel分布是一种用于近似离散分布的连续分布。 3. 定义温度参数:Gumbel-Softmax层有一个温度参数,用来控制生成离散分布的平滑度。较高的温度会使采样结果更加平滑,而较低的温度会使采样结果更加尖锐。 4. 进行Gumbel-Softmax采样:在训练过程中,通过对Gumbel分布进行采样,利用温度参数将连续采样结果转换为离散采样结果。这样可以保证采样结果可微分,便于反向传播进行模型训练。 5. 计算损失函数:根据生成的离散采样结果和目标值,计算模型的损失函数。常用的损失函数包括交叉熵损失函数等。 6. 反向传播与优化:通过反向传播算法计算模型参数的梯度,并使用优化算法(如随机梯度下降)更新模型参数,以使损失函数最小化。 需要注意的是,Gumbel-Softmax只是一种采样技术,你需要将其与适当的模型结构和损失函数结合使用,以满足具体任务的需求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MUKAMO

你的鼓励是我们创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值