【机器学习】应用深度Q网络(DQN)在Atari Breakout游戏中实现智能体

1. 绪论

1.1 DQN是什么?

Deep Q-Learning,也被称为Deep Q-Network(DQN),是一种结合了深度学习和Q-Learning的强化学习算法。以下是关于Deep Q-Learning的详细解释:

  1. 背景介绍
    - 强化学习是一种机器学习方法,使智能体能够通过与环境互动来学习最佳行为。智能体在环境中执行动作,并接收奖励或惩罚作为反馈。
    - Q-Learning是一种基于值函数的强化学习算法,它通过学习一个状态-动作值函数(Q函数)来评估每个状态下采取每个动作的预期回报。

  2. Deep Q-Learning的核心思想
    - 使用深度神经网络(通常是卷积神经网络或多层感知机)作为函数逼近器,来估计动作-值函数(即Q函数)。
    - 网络的输入是环境的状态,输出是每个可能动作的预期奖励。

  3. 算法流程
    - 初始化Q网络和目标Q网络。
    - 智能体在环境中执行动作,并记录经验(包括状态、动作、奖励和下一个状态)。
    - 将这些经验存储起来,并在训练过程中使用经验回放机制来随机抽取一部分经验进行训练。
    - 使用随机梯度下降等优化算法来更新Q网络的参数,以最小化预测Q值与真实Q值之间的差距。
    - 定期或按照一定规则更新目标Q网络的参数,使其与Q网络的参数保持一致或接近。

  4. 特点与优势
    - 能够处理高维状态空间和复杂的决策问题。
    - 通过经验回放机制提高了训练的稳定性和效率。
    - 在许多领域(如游戏、机器人控制、自然语言处理等)都取得了突破性的成果。

  5. 关键技术
    - 经验回放:将历史的状态、动作、奖励等经验存储起来,并在训练过程中按一定规则采样,以提高训练的稳定性和效率。
    - 目标网络:修改网络的更新方式,例如不把刚学习到的网络权重马上用于后续的自益过程,以稳定训练过程。

  6. 应用领域
    - 游戏(如Atari游戏、围棋等)。
    - 机器人控制。
    - 自然语言处理。
    - 其他需要复杂决策的领域。

Deep Q-Learning是一种强大的机器学习算法,它结合了深度学习和强化学习的优势,为解决复杂决策问题提供了新的思路和方法。

1.2 Atari Breakout游戏概述

Atari Breakout游戏是一款经典的Arcade游戏,最初由Atari公司在1976年发布。这款游戏以其简单的游戏机制和富有挑战性的玩法而广受欢迎,成为了游戏历史上的一个里程碑。

游戏概述

  1. 游戏目标:玩家的目标是使用底部的挡板(paddle)来反弹一个球(ball),使其击碎屏幕顶部的砖块(bricks)。每当一个砖块被击中时,它会被消除并获得分数。当所有砖块都被消除时,游戏进入下一关,砖块排列会变得更加紧密,难度也会相应增加。

  2. 游戏机制
    - 挡板(Paddle):玩家控制的挡板位于屏幕底部,可以左右移动来反弹球。挡板的长度通常固定,但某些版本可能允许玩家通过收集特殊物品来增加挡板长度。
    - 球(Ball):球在屏幕上反弹,当球接触到挡板、砖块或屏幕边缘时,它会改变方向。如果球接触到屏幕底部而没有先接触挡板,则游戏结束。
    - 砖块(Bricks):砖块位于屏幕顶部,有多种颜色和形状。不同颜色的砖块可能需要被击中多次才能被消除。某些砖块被消除时可能会掉落特殊物品,如增加挡板长度或给予额外球。

  3. 操作方式:玩家通常使用两个按钮或操纵杆来控制挡板。一个按钮或操纵杆向左移动挡板,另一个向右移动。在某些版本中,玩家还可以使用额外的按钮来发射球或触发特殊效果。

  4. 关卡设计:随着游戏的进行,关卡难度逐渐增加。砖块排列变得更加紧密,需要更多的技巧和时间来消除所有砖块。某些关卡可能还包含障碍物或特殊效果,如移动挡板或改变球的速度。

  5. 游戏影响:Atari Breakout游戏对后来的游戏设计产生了深远影响。它启发了许多类似的砖块消除游戏,如Tetris(俄罗斯方块)和Puzzle Bobble(泡泡龙)。同时,这款游戏也展示了强化学习在解决复杂决策问题方面的潜力,成为了深度学习和强化学习研究中的常用基准测试之一。

Atari Breakout游戏以其简单的游戏机制和富有挑战性的玩法成为了一款经典的游戏作品,并对后来的游戏设计和机器学习研究产生了重要影响。

1.3 智能体概念

智能体(Agent)是一个在人工智能、计算机科学、机器人学、社会学、经济学和认知科学等领域中广泛使用的概念。它通常指的是一个具有自主行为能力的实体,能够在特定环境中感知信息、进行决策并采取行动以实现其目标。

在人工智能领域,智能体通常指能够自主执行任务的软件或硬件系统。这些智能体通常具备以下特性:

  1. 自主性:智能体能够在没有直接人类干预的情况下运行,并根据其内部状态和感知到的环境信息自主决策和行动。
  2. 感知能力:智能体能够感知其所在环境的信息,如通过传感器获取外部数据,或通过分析其他智能体的行为来了解环境状态。
  3. 决策能力:智能体能够基于其感知到的信息和内部状态,通过一定的决策算法(如规则系统、机器学习模型等)来选择合适的行动。
  4. 行动能力:智能体能够执行决策产生的行动,这些行动可能包括移动、操作物体、与其他智能体交互等。
  5. 目标导向性:智能体通常具有明确的目标或任务,其决策和行动都是为了实现这些目标。

智能体可以应用于各种领域,如:

  • 机器人技术:智能体可以作为机器人的大脑,控制机器人的运动和交互行为。
  • 智能系统:智能体可以用于构建智能家居、智能交通等智能系统,通过感知环境和用户需求来提供智能化的服务。
  • 电子商务:智能体可以作为虚拟助手或智能客服,为用户提供个性化的购物建议、解决用户问题等服务。
  • 社交网络:智能体可以模拟人类行为,参与社交网络中的互动和交流。

在强化学习中,智能体通常指与环境进行交互并学习最优策略的学习者。智能体通过与环境进行交互(如执行动作、接收奖励等)来收集数据,并利用这些数据来更新其策略,以便在未来更好地适应环境并实现其目标。

2. 智能体的训练过程

2.1 设置

以下代码是深度Q学习(DQN)在Atari Breakout游戏中实现的设置部分。它主要负责配置训练环境和参数:

  1. 设置后端引擎:代码首先设置了Keras的后端引擎为TensorFlow,确保深度学习模型能够在TensorFlow框架上运行。

  2. 导入所需的库:接着,代码导入了Keras、Gymnasium、NumPy和TensorFlow等库,这些库提供了实现深度Q学习所需的基础功能。

  3. 配置参数:定义了一系列控制训练过程的参数,包括:
    - seed:确保实验的可重复性。
    - gamma:折扣因子,用于计算未来奖励的当前价值。
    - epsilon:贪婪参数,用于平衡探索和利用。
    - epsilon_minepsilon_max:贪婪参数的最小和最大值,用于控制epsilon随时间的衰减。
    - epsilon_interval:用于计算epsilon衰减的速率。
    - batch_size:从重放缓冲区中抽取的样本批量大小。
    - max_steps_per_episode:每个剧集的最大步数。
    - max_episodes:训练过程中的最大剧集数。

  4. 创建和配置Atari环境:使用Gymnasium库创建了Atari Breakout环境,并对其进行了预处理,比如帧率转换、屏幕裁剪等。此外,还使用了FrameStack来堆叠最近的几个帧,为智能体提供更丰富的状态信息,并设置了环境的随机种子以确保结果的可重复性。

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import keras
from keras import layers

import gymnasium as gym
from gymnasium.wrappers import AtariPreprocessing, FrameStack
import numpy as np
import tensorflow as tf

# 整个设置的配置参数
seed = 42
gamma = 0.99  # 过去奖励的折扣因子
epsilon = 1.0  # 贪婪参数epsilon
epsilon_min = 0.1  # 最小贪婪参数epsilon
epsilon_max = 1.0  # 最大贪婪参数epsilon
epsilon_interval = (
    epsilon_max - epsilon_min
)  # 减少采取随机行动机会的速率
batch_size = 32  # 从重放缓冲区取出的批量大小
max_steps_per_episode = 10000
max_episodes = 10  # 限制训练剧集,如果小于1,则会运行直到解决

# 使用Atari环境
# 指定`render_mode`参数以在弹出窗口中显示智能体的尝试。
env = gym.make("BreakoutNoFrameskip-v4")  # , render_mode="human")
# 环境预处理
env = AtariPreprocessing(env)
# 堆叠四帧
env = FrameStack(env, 4)
env.seed(seed)

2.2 实现深度Q网络

代码定义了用于深度Q学习(DQN)的神经网络模型,并且创建了两个模型:一个用于预测Q值,另一个作为目标模型用于稳定预测未来奖励:

  1. 定义动作数量
    num_actions = 4 表示在Atari Breakout游戏中智能体在每个状态下可以采取的行动数量是4个。

  2. 创建Q网络模型
    create_q_model() 函数定义了DQN的神经网络结构。这个网络结构是根据DeepMind的论文中定义的网络来构建的。网络由以下几层组成:
    - Lambda层:用于将输入张量的维度重新排列,以适应卷积层的输入需求。
    - 卷积层:三个Conv2D层依次堆叠,用于从游戏屏幕的帧中提取特征。第一个卷积层使用32个过滤器,大小为8x8,步长为4,激活函数为ReLU。第二个和第三个卷积层使用64个过滤器,分别具有不同的大小和步长,激活函数也是ReLU。
    - Flatten层:将卷积层的输出扁平化为一维数组,以便输入到密集层。
    - Dense层:第一个全连接层有512个单元,激活函数为ReLU。最后一个全连接层的单元数量等于可能的动作数(即4),激活函数为线性,输出即为每个动作的Q值。

  3. 实例化模型
    model = create_q_model() 创建了第一个模型实例,用于预测在给定状态下每个动作的Q值。

  4. 创建目标模型
    model_target = create_q_model() 创建了第二个模型实例,即目标模型。目标模型的权重会在训练过程中定期更新,以保持预测未来奖励的稳定性。这种技术有助于减少训练过程中的不稳定性。

总的来说,这段代码为深度Q学习算法提供了一个神经网络模型,该模型能够根据当前状态预测采取每个可能动作的预期回报(Q值)。通过训练这个模型,智能体可以学习在Atari Breakout游戏中如何做出最优决策。

这个网络学习Q表的一个近似值,Q表是智能体将采取的动作与状态之间的映射。对于每一个状态,我们都有四个可以采取的行动。环境提供状态,而行动是通过选择输出层预测的四个Q值中较大的一个来选择的。

num_actions = 4
def create_q_model():
    # 由Deepmind论文定义的网络
    return keras.Sequential(
        [
            layers.Lambda(
                lambda tensor: keras.ops.transpose(tensor, [0, 2, 3, 1]),
                output_shape=(84, 84, 4),
                input_shape=(4, 84, 84),
            ),
            # 屏幕帧上的卷积
            layers.Conv2D(32, 8, strides=4, activation="relu", input_shape=(4, 84, 84)),
            layers.Conv2D(64, 4, strides=2, activation="relu"),
            layers.Conv2D(64, 3, strides=1, activation="relu"
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MUKAMO

你的鼓励是我们创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值