PESTEL在AFI框架中的作用
AFI 战略框架(Analyze, Formulate, Implement——哈佛大学商学院的教授 Michael Porter)是企业战略管理中的一个重要理论模型,帮助企业系统性地分析和制定战略。
作为第一阶段Analyze的第一步,PESTEL模型为我们提供宏观环境扫描的指导思路:一般来说理论是走在大多数人的实践之前的,故我们通常只要从政治、经济、社会、技术、环境、法律六大维度,去系统梳理外部环境,并从庞杂的宏观因素中筛选对行业或企业具有决定性影响的驱动力。
核心原则:以“动态性、关联性、行动导向”为轴,避免机械套用模型。
工具升级:结合大数据(如实时政策监测)和AI(如供应链风险预测)提升分析效率
风险提示:跨国企业需平衡“政策红利”与“地缘风险”,例如通过情景规划预判技术封锁或贸易制裁
PESTEL分析过程模拟
假想企业现状:某民营数字科技企业,市场占有率不足8%,排名靠后。
企业愿景:到2035年,成为中国中小微企业SAAS企业管理软件行业前三,市场占有率达到25%。
企业使命:通过我们的SAAS软件服务,帮助中小微企业极大地改善、甚至是解决经营管理落后的问题。
企业价值观:诚信经营、追求卓越、创新驱动、以人为本。
为了节约时间,下面每个因素里仅搜集2-3个信息。
资料收集途径:互联网(实际还有问卷、走访、咨询、购买、雇佣专业调研机构等等)。
阶段一、扫描搜集、初步分析、筛选过滤
该阶段需要尽可能全地搜集看似与企业经营方向相关的信息。
在繁杂海量的信息中去扫描容易出现遗漏或主观片面化等问题,个人认为需要建立系统化的数据采集流程,包括:
- 多源数据整合。通过政府的公告和白皮书、行业协会报告、学术文献等渠道获取宏观数据,同时结合企业内部数据(如客户反馈、市场调研、运营数据)形成互补。例如某家具品牌通过收集《中央行政事业单位通用办公家具规格和性能指南》与电商销售数据,识别出环保法规与年轻消费趋势的关联性。
- 专家知识嵌入。建立由领域专家、政策研究员组成的顾问团队,定期开展专项研讨会。如某咖啡连锁品牌通过供应链专家预判碳足迹法规对原材料采购的影响,避免因法律变动导致供应链中断。
一、政治因素搜集与分析
1.国家发展规划
资料:中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要——202103
摘要:加快数字化发展 建设数字中国
链接:https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm
分析:
- 【文】当今世界正经历百年未有之大变局,新一轮科技革命和产业变革深入发展,国际力量对比深刻调整,和平与发展仍然是时代主题,人类命运共同体理念深入人心。【析】百年大变局——科技革命与产业变革,将会深刻影响国际力量当前的局势,企业可以依靠变革崛起,也可以因为变革没落。
- 【文】同时,国际环境日趋复杂,不稳定性不确定性明显增加,新冠肺炎疫情影响广泛深远,世界经济陷入低迷期,经济全球化遭遇逆流,全球能源供需版图深刻变革,国际经济政治格局复杂多变,世界进入动荡变革期,单边主义、保护主义、霸权主义对世界和平与发展构成威胁。【析】世界经济陷入低迷期——性价比兴起即成本领先战略至关重要;世界进入动荡变革期——注意关注国际风险带来的不利影响,如出口关税大幅增加导致盈转亏。
- 【文】我国已转向高质量发展阶段,制度优势显著,治理效能提升,经济长期向好,物质基础雄厚,人力资源丰富,市场空间广阔,发展韧性强劲,社会大局稳定,继续发展具有多方面优势和条件。同时,我国发展不平衡不充分问题仍然突出,重点领域关键环节改革任务仍然艰巨,创新能力不适应高质量发展要求,农业基础还不稳固,城乡区域发展和收入分配差距较大,生态环保任重道远,民生保障存在短板,社会治理还有弱项。【析】中长期社会发展趋势:向好或上升趋势。注重高质量发展即品质至上,摆脱粗制滥造;风险与机遇(科技融合):发展不平衡不充分、重点领域关键环节改革任务仍然艰巨,创新能力不适应高质量发展要求,农业基础还不稳固,城乡区域发展和收入分配差距较大,生态环保任重道远,民生保障存在短板,社会治理还有弱项。
2.国家政策指引
资料:推进产业数字化和数字产业化协调发展——202501 人民政协
链接:http://www.cppcc.gov.cn/zxww/2025/01/13/ARTI1736752546059472.shtml
分析:
- 【文】全球数字经济多极化趋势进一步深化。从规模看,美国数字经济规模蝉联世界第一,达17.2万亿美元,中国位居第二,规模为7.5万亿美元;从占比看,英国、德国、美国数字经济占GDP比重均超过65%,同时德国产业数字化比重连续多年高于其他国家,达到92.1%。不论是产业数字化还是数字产业化,我国目前仍然存在着巨大的发展空间。我国数字经济发展总体水平和质量,与发达国家相比还存在较大差距,尤其是在一些基础性、关键性的领域。【析】赛道规模足够大、增长空间巨大,有待进一步开展细分领域调研。
- 【文】我国数字经济发展也面临一些问题和挑战,例如,数字经济大而不强;关键技术工程亟待突破,关键领域创新能力不足;法律制度环境仍需完善;数字经济发展不平衡,不同行业、不同区域、不同群体间数字鸿沟未有效弥合;数字经济国际话语权仍需提高等等。【析】现状中的机遇和风险,这些问题和挑战都是国家积极推进要攻克的,未来从事相关行业的头部企业可能会得到可观的支持以提供可持续的国际竞争力。
- 【文】加快推动数字产业化。培育壮大人工智能、大数据、区块链、云计算、网络安全等新兴数字产业,提升通信设备、核心电子元器件、关键软件等产业水平。构建基于5G的应用场景和产业生态,在智能交通、智慧物流、智慧能源、智慧医疗等重点领域开展试点示范。鼓励企业开放搜索、电商、社交等数据,发展第三方大数据服务产业。打造智慧利民的生态圈、新型数字消费业态、面向未来的智能沉浸式服务体验,促进共享经济、平台经济健康发展。【析】具体细分技术与业务领域方向,若企业具备相关资源和竞争优势,可以强化布局。
- 【文】推进产业数字化转型。加强行业的传统基础设施数字化、智能化改造,实施“上云用数赋智”行动,推动数据赋能全产业链协同转型。畅通数据资源大循环,释放商业数据价值潜能,建立符合国家政策的数据资产计价研究与分配机制。在重点行业和区域建设若干国际水准的工业互联网平台和数字化转型促进中心,深化研发设计、生产制造、经营管理、市场服务等环节的数字化应用,培育发展个性定制、柔性制造等新模式,加快产业园区数字化改造。深入推进服务业数字化转型,培育众包设计、智慧物流、新零售等新增长点。加快发展智慧农业,推进农业生产经营和管理服务数字化改造。【析】业务方向与路径指引。
3.政府政策支持
政策支持都需要根据企业实际情况进行评估,提前布局以争取有限的支持或奖励。
- 中共福建省委办公厅、福建省人民政府办公厅印发《关于支持中小微企业健康发展的若干措施》
- 推动企业创新转型。加大中小微企业创新支持力度,围绕关键核心技术突破、先进标准研制、中试项目成果转化等,实施省技术创新重点攻关及产业化项目,对入选项目给予最高300万元支持。推进福州、厦门、泉州、龙岩等中小企业数字化转型试点城市建设,支持培育一批产业互联网平台,开展“千员万企”数字化诊断行动,推动中小微企业开展数字化转型改造。
- 加大专精特新企业培育力度。支持专精特新中小微企业打造新动能、攻坚新技术、开发新产品、强化产业链配套能力,依法保障其对土地、资本、技术、人才、数据等要素需求。新培育1000家以上专精特新中小微企业,对新认定的专精特新“小巨人”企业,省级财政给予一次性100万元奖励。用好中央专项资金,积极遴选专业化第三方服务机构,重点为专精特新“小巨人”企业提供人才培训、管理诊断、质量诊断等培育赋能服务。
- 加强科技创新服务供给。制定省级共性技术平台管理办法,认定并支持10个省级共性技术平台,支持各地根据本地产业特点和企业需求打造共性技术平台,为中小微企业提供技术研发验证服务。在智能装备、新材料、纺织鞋服等重点领域打造15个中试服务平台。推动省大型科研设施仪器管理服务平台收录并开放1.1万台以上科研仪器,按照成本补偿和非盈利的收费原则向中小微企业提供仪器共享服务。
- 支持参与政府采购。对采购限额标准以上、400万元以下政府采购工程项目,适宜由中小微企业提供的,应当专门面向中小微企业采购;400万元以上政府采购工程项目中适宜由中小微企业提供的,将预留份额按国家有关规定阶段性提高至40%以上,专门面向中小微企业采购。鼓励采购人在有预付安排的政府采购合同中,约定不低于合同金额30%的预付款,对于中小微企业合同预付款比例可提高至50%以上。
- 科技型中小企业有哪些扶持政策
- 2022年,国家新的财税政策出台,支持科技型中小企业研发。研发费用税前加计扣除比例从75%提高到100%;
- 福建省扶持政策。1)科技创新券补助:补助符合条件的科技型中小企业在研发过程中向境内高校、科研院所及其他企事业单位购买科技创新服务所产生的费用。额度不超过企业购买科技创新服务实际发生费用的50%,其中省级创新券补助资金补助额度不超过实际发生费用30%,各地可视情况补足其中的20%部分。每家企业申请补助额度不超过20万元,省级创新券补助资金补助额度不超过12万元。2)科技型中小企业技术创新资金项目:项目申报截止前在科技部科技型中小企业评价平台取得入库登记编号的企业,申请金额不超过45万元的创新资金项目。3)创新创业大赛:符合条件的科技型中小企业可参与创新创业大赛,省赛获奖企业将择优推荐晋级全国赛,晋级全国赛的企业,除获得国家有关服务政策支持外,还将获得省科技型中小企业技术创新资金后补助支持;符合科技企业孵化器入驻条件的,由各地科技企业孵化器考核,可优先入驻科技企业孵化器,享受各科技企业孵化器有关优惠服务;有关创投公司、银行将为符合条件的项目提供创业融资、商业模式、银行贷款授信、股改上市等方面的指导,对比赛优胜项目进行重点跟踪,符合条件的将优先给予贷款融资支持。
二、经济因素搜集与分析
1. 宏观经济增速与数字化转型需求
- 因疫情冲击和贸易环境不稳定,全球经济增速放缓促使企业通过数字化转型降本增效,推动SaaS需求增长。例如,中国信息通信研究院云计算与大数据研究所发布《中国企业级SaaS产业发展研究报告(2024年)》(以下简称“报告”),报告显示,2023年我国SaaS市场规模达581亿元,增速约为23.1%。艾媒咨询预计2027年中国SaaS行业市场规模将超1500亿元。驱动因素:企业需适应经济波动,通过SaaS实现敏捷运营(如财务数字化、供应链协同)。中小企业预算有限,可能优先选择低成本的通用型SaaS,而大型企业由于具备规模效益更倾向于定制化垂直解决方案,一亿的利润只需要提升1%就能获得100万收益。
- 消费者购买力与行业渗透。居民收入增长和线上消费习惯的普及(如2023年中国网上零售额15.42万亿元,增速11.8%)推动了电商、直播等细分领域的SaaS需求。同时,企业端对“线上办公”和“业财一体化”的需求激增,进一步扩大SaaS应用场景。
2. 融资环境与资本流动
- 2024年中央政治局第三十四次集体学习指出,党中央高度重视发展数字经济,拓展网络经济空间,不断提高企业级SaaS服务行业的数字化、网络化和智能化水平。在政策及社会因素利好下,SaaS服务商数量持续增加,行业竞争愈发激烈的环境下,产品质量和用户体验有助于提升品牌口碑,建立自身技术和服务壁垒,提升品牌价值。
- 2024年,是企业SaaS服务行业高歌猛进的一年。根据B2B内参&产业互联网大视野监测统计,2024年中国SaaS赛道共发生268起投融资事件,获投企业236家,融资总金额410.85亿元,融资事件起数以及金额都远超2024年。资料来自——2025-2031年中国SAAS (软件运营服务)行业市场发展现状调研与投资趋势前景分析报告。
3. 行业竞争与成本结构
- 头部效应与细分赛道竞争。中国SaaS市场呈现“强者愈强”格局,ERP、CRM等通用型领域由头部厂商主导,而垂类SaaS(如钢铁、零售)成为新增长点。应对策略:深耕行业Know-How(如钢银科技对钢铁产业链的深度理解)以构建差异化优势。
- 技术投入与成本优化。SaaS企业需平衡研发投入与盈利目标。例如,AI技术的应用(如方舟GPT平台)可提升产品智能化水平,但需控制研发成本。
三、社会因素搜集与分析
1. 企业对云服务的信任度提升
- 驱动因素:疫情加速了企业从本地部署向云端迁移的进程。根据IDC数据,2023年中国企业SaaS渗透率已达42%,企业对云原生系统的依赖度显著提高。
- 挑战:传统行业(如制造业)仍存在对数据主权和系统稳定性的担忧,需通过安全认证(如等保三级)和本地化部署方案消除顾虑。
2. 劳动力结构与工作方式变革
- 发展不均衡:中小企业员工普遍缺乏数字化技能,需SaaS厂商提供更简化的操作界面和培训支持(如钉钉“低代码开发平台”降低使用门槛)。
- 代际差异:Z世代员工对协同工具(如飞书、企微)的高接受度推动企业升级管理系统,以满足年轻群体对“无缝协作”的需求。
3. 数据隐私与伦理关切
- 社会对数据安全的敏感性增强。法规驱动:GDPR、中国《数据安全法》等倒逼SaaS厂商强化加密技术和权限管理,例如:金蝶云星空推出“数据沙箱”功能,隔离客户敏感信息;Salesforce提供GDPR合规模板,降低企业法律风险。
- 算法透明性与伦理争议。潜在冲突:AI驱动的管理决策(如绩效评估、裁员预测)可能引发员工对“算法黑箱”的质疑,需通过可解释性设计(如可视化决策路径)建立信任。
四、技术因素搜集与分析
1. 云计算与基础设施成熟度
- 云原生架构的普及。驱动因素:容器化(如Docker/Kubernetes)和微服务技术推动SaaS系统弹性扩展和快速迭代。例如,全球83%的企业采用云原生架构部署关键业务系统(Flexera 2023报告)。挑战:传统企业遗留系统(如本地ERP)向云端迁移时面临兼容性问题,需通过中间件或混合云方案过渡。
- 边缘计算与低延迟需求。场景适配:制造业、物流等实时性要求高的行业需要边缘节点就近处理数据。例如,SAP S/4HANA通过边缘计算优化工厂设备监控响应速度。
2. AI与大数据的深度集成
- 智能化功能升级。应用场景:①预测分析,如Salesforce Einstein通过AI预测客户流失风险,准确率超85%;②自动化流程,金蝶云·苍穹利用RPA自动生成财务报表,效率提升70%。技术瓶颈:中小企业数据质量不足导致AI模型训练效果受限,需提供预训练行业模型(如用友YonGPT的制造业知识库)。
- 数据湖与实时分析能力,架构优化:Snowflake等云数仓技术支持SaaS厂商实现TB级数据实时查询,赋能企业决策(如库存动态调整、营销ROI分析)。
3. 安全与隐私保护技术
- 零信任架构(Zero Trust)的落地。技术方案:多因素认证(MFA)、动态权限管理(如Okta身份云)和端到端加密(E2EE)成为SaaS安全标配。
- 隐私增强技术(PETs)。创新实践:微软Azure Confidential Computing通过可信执行环境(TEE)实现“数据可用不可见”,满足金融客户隐私需求。
五、环境因素搜集与分析
- 自然资源与能源成本,电力资源紧张可能增加数据中心运营成本。
- 自然灾害与业务连续性。极端天气(如洪涝、地震)可能影响数据中心稳定性,需建立多地灾备系统。国内区域性环境风险(如东部沿海台风)要求服务商优化基础设施布局,提升客户服务可靠性。
六、法律因素搜集与分析
1. 数据安全与隐私合规
《网络安全法》《数据安全法》《个人信息保护法》要求企业加强用户数据加密、权限管理和跨境传输限制,例如需通过等保三级认证。数据泄露的法律责任(如罚款可达企业年营收5%)要求服务商强化安全投入。
2. 行业细分法规
如医疗领域需符合HIPAA标准,要求服务商提供定制化合规解决方案。
3. 知识产权与技术标准
软件著作权和专利保护需严格遵循《著作权法》《专利法》,避免技术侵权纠纷。技术标准(如数字化标准体系建设国家标准GB/T 45341-2025)推动行业规范化,企业需通过认证提升市场竞争力。
4. 行业资质要求
如金融领域需符合央行金融科技监管框架,影响服务商的市场准入策略。
5. 劳动法与合同管理
《劳动合同法》要求服务商规范用工(如远程办公合规性),并需在SaaS产品中嵌入合同模板与风险提示功能。电子合同合法性(《电子签名法》)推动企业对SaaS电子签约工具的需求。
阶段二、Delphi法(德尔菲法)分析
PESTEL分析覆盖六大维度,但实践中可能存在信息冗余或关键因素遗漏。例如,同一政策(如“双碳目标”)对新能源企业和传统制造业的影响权重差异极大,需通过Delphi法组织多领域专家匿名反馈,筛选出与业务强相关的核心因素。
- 目的:Delphi法是一种专家咨询技术,通过多轮匿名调查,减少主观偏见,提高预测的准确性。
- 理由:
- 提高预测准确性:PESTEL分析可能基于公开资料,但专家对未来的看法和预测往往更为准确。
- 减少偏见:在多轮匿名调查中,专家可以自由表达意见,减少个人偏见和团体压力的影响。
- 综合不同观点:Delphi法可以综合不同专家的意见,形成更全面的看法。
- 示例: 某证券IT企业进行PESTEL分析时,通过德尔菲法排除了“社会共同富裕”等泛化指标,聚焦“证券系统上云”等技术政策因素。
- 风险:Delphi法若专家选择失当(如行业覆盖不全),可能导致系统性偏差。
- 对策: 采用“行业专家(40%)+技术专家(30%)+政策研究者(30%)”的复合型专家组。
Delphi参考资料详见:https://wiki.mbalib.com/wiki/%E7%89%B9%E5%B0%94%E8%8F%B2%E6%B3%95#.E5.BE.B7.E5.B0.94.E8.8F.B2.E6.B3.95.E7.9A.84.E8.B5.B7.E6.BA.90.E6.BC.94.E5.8F.98
初步定性分析
组织N位专家(包括高管)进行基础修正。以下基于上一节扫描到的信息,并基于个人的假设与本文想体现的特点(基于企业特质与发展的动态思考)进行简要分析,仅供参考。
PESTEL因素重要度Delphi分析记录表(专家)
因素 | 评分(重要度,10分制更精确) | 评价描述 | ||||
---|---|---|---|---|---|---|
1分 | 2分 | 3分 | 4分 | 5分 | ||
P1:国家发展规划 | √ | 国家发展规划本身属于中性,但与企业经营方向一致, 会使企业或多或少收益,可以长期跟踪 | ||||
P2:政策指引支持 | √ | 为企业提供发展指引,可以影响企业中期的经营决策 为企业提供实质性的补贴、税免、奖励,金额可观 | ||||
E1:宏观经济增速与数字化转型需求 | √ | 代表行业中期趋势与市场结构,应定期关注相关指标 | ||||
E2:融资环境与资本流动 | √ | 公司缺少资金急需融资,此指标一定程度反映投资偏好, 同时体现SAAS赛道的热度较高,或是融资的好时机 | ||||
E3:行业竞争与成本结构 | √ | 研发成本已经持续控制,垂直领域方向与现阶段重点偏离 | ||||
S1:企业对云服务的信任度提升 | √ | 用户对云服务的信任已经有一定时间积累 | ||||
S2:劳动力结构与工作方式变革 | √ | 劳动力集中在80-00为主,不同代际对SAAS的使用存在差异 | ||||
S3:数据隐私与伦理关切 | 作为SAAS服务商,客户的隐私与数据安全是客户信赖的基石,可并入L1 | |||||
T1:云计算与基础设施成熟度 | √ | 基础设施目前已经基本成熟,不必过多关注 | ||||
T2:AI与大数据的深度集成 | √ | 目前公司市场占用率较低,需要加强数据沉淀和挖掘 | ||||
T3:安全与隐私保护技术 | 必须投入资源实现安全与隐私保护需求,可并入L1 | |||||
e1:自然资源与能源成本 | √ | 影响很低,可以忽略 | ||||
e2:自然灾害与业务连续性 | √ | 使用分布式、异地或多服务商云,实现容灾与高可用 | ||||
L1:数据安全与隐私合规 | √ | 合规经营,以免造成公司巨大损失 | ||||
L2:行业细分法规 | √ | 不涉及 | ||||
L3:知识产权与技术标准 | √ | 保护知识产权、以高技术标准研发,作为关键竞争力 | ||||
L4:行业资质要求 | √ | 暂不涉及 | ||||
L5:劳动法与合同管理 | √ | 合规经营,以免造成公司损失 |
假设上述表格为经过3轮专家评审后达成共同意见的结果,去掉3分以下重要程度较低的因素,最终结果是:
P | E | S | T | e | L |
---|---|---|---|---|---|
政策指引与支持 | 宏观经济增速与数字化转型需求 融资环境与资本流动 | 劳动力结构与工作方式变革 | AI与大数据的深度集成 | 自然灾害与业务连续性 | 数据安全与隐私合规 知识产权与技术标准 劳动法与合同管理 |
同时应注意建立持续的监控机制,以动态性、关联性、行动导向为基础,定期对扫描到的因素进行再次检查更新。监控记录表参考如下:
序号 | 因素类型 | 描述 | 评价 | 跟踪频率 | 最后更新时间 | 跟踪人 | 登记人 | 初次扫描时间 |
---|---|---|---|---|---|---|---|---|
1 | 政治 | 国家发展规划 | 对我司核心SAAS业务有促进发展作用 | 5年一次 | 2025/05/06 | 张三 | 张三 | 2020/06/01 |
阶段三、AHP法(层次分析法)分析
层次分析法,即Analytic Hierarchy Process(AHP) , 简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹兹堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
它是一种【定性和定量】相结合、系统化、层次化的权重分析方法(其他确定指标体系权重的方法:熵值法、模糊综合评价、主成分分析、秩和比、CRITIC等),是【把专家的主观感觉量化】的方法。应用过程中,最明显的特点是要【构建判断矩阵】,让专家进行【两两的重要性对比打分】。
参考资料1:https://zhuanlan.zhihu.com/p/578295406
参考资料2:https://baike.baidu.com/item/%E5%B1%82%E6%AC%A1%E5%88%86%E6%9E%90%E6%B3%95/1672
参考资料3:https://blog.csdn.net/Zlyzjiabjw547479/article/details/146298951?spm=1001.2101.3001.6650.4&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EYuanLiJiHua%7EPosition-4-146298951-blog-84863416.235%5Ev43%5Econtrol&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EYuanLiJiHua%7EPosition-4-146298951-blog-84863416.235%5Ev43%5Econtrol&utm_relevant_index=7
层次分析法的核心是建立一个层次结构模型,通常包括三个层次:
目标层:决策的最终目标。
准则层:影响目标实现的各种准则或标准。
方案层:实现目标可能采取的各种方案。
在建立层次结构后,通过两两比较各层次中的元素,形成判断矩阵,计算各元素的权重,最终得到各方案的综合评价。
步骤1:构建层次结构模型
目标层:确定PESTEL各因素的重要程度并量化权重。
准则层:9大因素。
方案层:在这个例子中,方案层就是准则层本身,因为我们正在评估这9个因素。
步骤2:成对比较
你需要对这三个准则进行成对比较,并使用1到9的标度来表示它们相对于增加公司收入的相对重要性。初始化评分矩阵如下。
因素 | 政策指引支持 | 宏观经济 | 融资与资本 | 劳动力结构 | AI与大数据 | 业务连续性 | 安全与合规 | 知识产权与技术标准 | 劳动法与合同管理 |
---|---|---|---|---|---|---|---|---|---|
政策指引支持 | 1 | ||||||||
宏观经济 | 1 | ||||||||
融资与资本 | 1 | ||||||||
劳动力结构 | 1 | ||||||||
AI与大数据 | 1 | ||||||||
业务连续性 | 1 | ||||||||
安全与合规 | 1 | ||||||||
知识产权与技术标准 | 1 | ||||||||
劳动法与合同管理 | 1 |
该表是正互反矩阵,只需要填写一半就可以,另一半在数据收集后进行倒数的填补就可以。其中相对重要性等级表如下(参考链接:https://zhuanlan.zhihu.com/p/578295406)。
比值 | 含义(两指标比较) |
---|---|
1 | 一指标和另一指标相比同等重要 |
3 | 一指标和另一指标相比稍微重要 |
5 | 一指标和另一指标相比明显重要 |
7 | 一指标和另一指标相比强烈重要 |
9 | 一指标和另一指标相比极端重要 |
2, 4, 6, 8 | 表示上述相邻判断的中间值,重要程度介于1, 3, 5, 7, 9之间 |
1/3 | 一指标和另一指标相比稍微不重要 |
1/5 | 一指标和另一指标相比明显不重要 |
1/7 | 一指标和另一指标相比强烈不重要 |
1/9 | 一指标和另一指标相比极端不重要 |
1/2, 1/4, 1/6, 1/8 | 表示上述相邻判断的中间值,重要程度介于1/3, 1/5, 1/7, 1/9之间 |
以左边第一列为基准,与右侧逐一比较,最终评估结果如下:
辅助分析表格(简化),只对着上面的表格分析比较抽象,建议个人借助辅助工具以便保持各因素之间重要度排序一致性,降低局部错乱可能,便于检查纠错,仅供参考(注意,所有因素建议落在下面9个值域之间,可以相同值,但若超出此值域需要引入更加复杂的步骤和算法):
重要度排序 | 因素 | 重要度分级说明 |
---|---|---|
1 | 劳动法与合同管理 | 影响产品研发等 |
2 | 劳动力结构 | 影响产品研发等 |
3 | AI与大数据 | 影响产品研发等 |
4 | 政策指引支持 | 对已经具备一定条件的政策,争取去申请 |
5 | 安全与合规 | 控制经营风险,提前预防、规避、准备应对措施 |
6 | 宏观经济 | 影响业务(竞争)战略,关系到营收水平 |
7 | 业务连续性 | SAAS业务连续性有较高要求,大多数情况下都影响营收水平 |
8 | 融资与资本 | 决定企业发展速度和质量 |
9 | 知识产权与技术标准 | 涉及竞争壁垒和持续竞争优势 |
步骤三计算权重向量
有了分析矩阵我们可以计算其权重(权重向量),常用的近似计算方法有和法、方根法。(注:精确计算复杂性高,而且不必要,和法和方根法是简化计算去近似值的过程)
- 方根法
- 【优】对极端值的敏感性较低:方根法倾向于减小极端值的影响,这在存在异常评分时尤为重要,可以避免因极端意见导致的权重失真。
- 【优】适合于不对称数据:对于评价结果中存在显著差异的情况,方根法能够更好地聚焦于中间值,提供更为稳健的权重评估。
- 【劣】计算复杂度:在处理较大规模的数据集时,方根法的计算相对复杂,需要进行多次乘法和开方操作。
- 【劣】可能导致信息损失:在一些情况下,极端值可能包含重要的信息,方根法可能会忽略这些信息。
- 和法
- 【优】计算简单直观:和法通过简单的算术平均计算权重,易于理解和实施,适合大多数用户。
- 【优】更直接的反映整体评价:由于和法是基于所有评价值的总和,能够充分利用所有参与者的意见,从而提供一个更全面的结果。
- 【劣】对极端值的敏感性:和法容易受到极端值的影响,如果某个评价极高或极低,可能会导致整体权重的失真。
- 【劣】不适合不对称数据:在评价结果差异较大的情况下,和法可能无法准确反映出各因素的真实重要性。
- 在进行战略影响因素重要度评估时,选择方根法还是和法应根据具体情况而定:
- 如果数据中存在极端值,或者评价结果的差异较大,建议使用方根法,因为它能够提供更稳健的权重评估,减少极端意见的影响。
- 如果数据相对均衡,且参与者的意见较为一致,使用和法可能会更简单直接,且能够充分反映所有参与者的意见。
- 最终,选择哪种方法应结合具体的评估目标、数据特性以及参与者的背景等因素进行综合考虑。在某些情况下,可以考虑将两种方法结合使用,借此对权重评估进行交叉验证,提升结果的可靠性。
- 计算过程参考:https://blog.csdn.net/qq_41686130/article/details/122081827
- 军事分析实例:https://mp.weixin.qq.com/s?__biz=Mzk0MjI2MzI4NQ==&mid=2247484113&idx=1&sn=e7e966db424b400e5a250b641b109b21&chksm=c316db82a3438e58860a267be9c399cc237341fef9ea5a08628f093894ffcb5abc30d625bbf0#rd
-
和法计算步骤:
- 将评分矩阵归一化(标准化),即每个单元格的值 ÷ 该列所有值的和(例:B16=B4/SUM($B
4
:
4:
4:B$12))
归一化后的矩阵如下
- 计算每一行的算数平均权重,如:K16=SUM(B16:J16)/9
- 计算特征值与最大特征值,如:L40=SUM(B40:J40)/(9*K16) ,其中9 是 因素个数,K16是前面计算出的算数平均权重
- 计算最大特征值λmax = SUM (L40:L48)、一致性指标C.I.=(λmax-9)/(9-1)、一致性比率=C.I./R.I.(R.I. = 1.45 从下面码表选取)
- 结论,C.R. < 0.1 一致性校验通过,算数平均权重可以使用了。
- 将评分矩阵归一化(标准化),即每个单元格的值 ÷ 该列所有值的和(例:B16=B4/SUM($B
4
:
4:
4:B$12))
-
方根法计算步骤:
-
先求几何平均值,如下公式所示。再进行一次归一化,得到L列值,如L28 = =K28/SUM(K28:K36)。
-
基础评分表格的每列分别乘以对应的几何平均权重,形成如下表格,其中B列所有值都乘以L28,C列所有值乘以L29以此类推。
特征值L56 = SUM(B56:J56)/(9*L28) ,其中9代表元素个数,L28是前面计算的几何平均权重
经过一致性验证,C.R. < 0.1, 几何平均权重可用
-
阶段四、分析报告
略,结论用和法就取和法的算术平均权重,用方根法就用几何平均权重。
PESTEL 总结
PESTEL分析后引入Delphi和AHP,实质是“广度→精度→深度”的决策升级:Delphi解决信息过载与主观偏差,AHP实现复杂关系的量化落地。二者结合可使战略分析的可靠性提升37%-52%(基于制造业案例统计),尤其在VUCA(易变、不确定、复杂、模糊)环境下具有不可替代性。