Linear Algebra Lecture 8

Linear Algebra Lecture 8

1. Complete solution of Ax=b A x = b
2. Rank r

Example 1

x1+2x2+2x3+2x4=b12x1+4x2+6x3+8x4=b23x1+6x2+8x3+10x4=b3 { x 1 + 2 x 2 + 2 x 3 + 2 x 4 = b 1 2 x 1 + 4 x 2 + 6 x 3 + 8 x 4 = b 2 3 x 1 + 6 x 2 + 8 x 3 + 10 x 4 = b 3

Changed the equations to augmented matrix(增广矩阵)
Augmented matrix = [Ab] [ A b ]

1232462682810b1b2b3 [ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ]

Then do elimination to the augmented matrix.

1232462682810b1b2b3100200222244b1b22b1b33b1100200220240b1b22b1b3b2b1 [ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ] → [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 2 4 b 3 − 3 b 1 ] → [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 0 0 b 3 − b 2 − b 1 ]

After the elimination, we can find 2 pivot columns, column 1 and 3.
And for the last row we can find 0=b3b2b1 0 = b 3 − b 2 − b 1 , that’s the condition for solvability.

Suppose b=156 b = [ 1 5 6 ] , then

100200220240b1b22b1b3b2b1100200220240130 [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 0 0 b 3 − b 2 − b 1 ] → [ 1 2 2 2 1 0 0 2 4 3 0 0 0 0 0 ]

Solvability

What are the conditions on b that make the equation solvable?
Ax=b A x = b is solvable exactly when b is in the column space of A.
If a combination of the rows of A gives the zero row, then the same combination of the components of b has to give zero.

Find complete solutions

Step 1, find a particular solution(特解), X particular.
Set all free variables to zero, then solve Ax=b A x = b for the pivot variables.

{x1+2x2+2x3+2x4=12x3+4x4=3{x1+2x3=12x3=3xp=20320 { x 1 + 2 x 2 + 2 x 3 + 2 x 4 = 1 2 x 3 + 4 x 4 = 3 → { x 1 + 2 x 3 = 1 2 x 3 = 3 → x p = [ − 2 0 3 2 0 ]

The particular solution comes first check to have zero equals zero, and then set all the free variables to zero, solve for the pivot variables, then get a particular solution.

Step 2, add on null space. The complete solution is one particular solution plus all different vectors out of the null space.
x=xparticular+xnullspace x = x p a r t i c u l a r + x n u l l s p a c e

{Axp=bAxn=0A(xp+xn)=b+0=bx=xp+xn { A x p = b A x n = 0 → A ( x p + x n ) = b + 0 = b → x = x p + x n

Special solutions in the null space take 1 and 0 in the free variables, then solve the pivot variables. The null space consists of all combinations of the special solutions.

xcomplete=20320+c12100+c22020 x c o m p l e t e = [ − 2 0 3 2 0 ] + c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 0 ]

Algorithm
The algorithm to solve Ax=b A x = b is just go through elimination and find the particular solution, and then find those special solutions.


Rank r

m m by n matrix A A of rank r (know rm r ≤ m , rn r ≤ n )

Full column rank means r=n r = n , a pivot in every column, means there are n n pivot columns and no free variable.

If there are no free variables to give value, then the null space of A is only the zero vector. N(A) N ( A ) ={zero vector}

Solution x to Ax=b A x = b , if there is a solution, x=xparticular x = x p a r t i c u l a r , it’s unique solution if it exists , 0 or 1 solutions.

Full row rank means r=m r = m , every row has a pivot, get m pivots.
After do elimination, and don’t get any zero rows, so there aren’t any requirements on b b , so can solve Ax=b for every b b .Left with nr=nm free variables.

Square matrix with full rank r=m=n r = m = n , means the matrix is invertible.
The reduced row echelon form for an invertible matrix is the identity. R=I R = I .
The null space is zero vector only, and can solve Ax=b A x = b for every b b .


r=m=n , R=I R = I , 1 solution to Ax=b A x = b

r=n<m r = n < m , R=[I0] R = [ I 0 ] , 0 or 1 solution to Ax=b A x = b

r=m<n r = m < n , R=[IF] R = [ I F ] , solution to Ax=b A x = b

r<m,r<n r < m , r < n , R=[I0F0] R = [ I F 0 0 ] ,0 or solution to Ax=b A x = b

The rank r tells you everything about the number of solutions, except the exact entries in the solutions.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值