Linear Algebra Lecture 10

Linear Algebra Lecture 10

1. Four Fundamental Subspaces

Four subspaces

Column space C(A) C ( A )
Null space N(A) N ( A )
Row space = All combinations of rows of A A = All combinations of AT = C(AT) C ( A T )
Null space of AT A T = the left null space of A A (左零矩阵) = N(AT)

When A A is m×n,
C(A) C ( A ) in Rm R m
N(A) N ( A ) in Rn R n
C(AT) C ( A T ) in Rn R n
N(AT) N ( A T ) in Rm R m


basis of A transpose

A=111212323111=100010110100=[I0F0]=R A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] = [ 1 0 1 1 0 1 1 0 0 0 0 0 ] = [ I F 0 0 ] = R

The column space changed after we do row reduction, the column space of R is not the column space of A A , C(R)C(A), different column spaces.

The row space of A A and row space of R are all combinations of these rows, then the basis of R R will be a basis for the row space of the original A.

For the row space of A A or of R, a basis is the first r r (rank) rows of R. It’s the best basis. If the columns of the identity matrix are the best basis for Rn R n , the rows of R R are the best basis for the row space, best in the sense of being as clean as I can make it.


Null space of A transpose

For N(AT), it has in it vectors, call them y y , if ATy=0, then y y is in the null space of A transpose.

Take transpose on both side of
ATy=0yTA=0T A T y = 0 → y T A = 0 T , then I have a row vector, y y transpose, multiplying A and multiplying from the left, that’s why it called the left null space.

Basis of left null space

Simplified A A to R should have revealed the left null space too. From A A to R, took some step, and I’m interested in what were those steps.

Gauss-Jordan, were you tack on the identity matrix, [Am×nIm×m] [ A m × n I m × m ] .
And do the reduced row echelon form of this matrix, rref[Am×nIm×m][Rm×nEm×m] r r e f [ A m × n I m × m ] → [ R m × n E m × m ] .

E E is just going to contain a record of what we did, we did whatever it took to get A to become R R , and at the same time, we were doing it to the identity matrix.

So we started with the identity matrix, we took all this row reduction amounted to multiplying on the left by some matrix, some series of elementary matrices that altogether gave us one matrix, and that matrix is E.

E[Am×nIm×m][Rm×nEm×m] E [ A m × n I m × m ] → [ R m × n E m × m ]

EA=R E A = R

When A A was square and invertible, EA=I, then E E was A1.
Now A A is rectangular, it hasn’t got an inverse. Then follow Gauss-Jordan to get E

111212323111100010001=100010110100111210001 [ 1 2 3 1 1 0 0 1 1 2 1 0 1 0 1 2 3 1 0 0 1 ] = [ 1 0 1 1 − 1 2 0 0 1 1 0 1 − 1 0 0 0 0 0 − 1 0 1 ]

E=111210001 E = [ − 1 2 0 1 − 1 0 − 1 0 1 ]

The dimension of the left null space is supposed to be mr m − r .
There is one combination of those three rows that produces the zero row. If I am looking for the left null space, I am looking for combinations of rows that give the zero row.


basis and dimension of four subspaces

Four subspaces C(A) C ( A ) N(A) N ( A ) C(AT) C ( A T ) N(AT) N ( A T )
Basispivot columnsspecial solutionsfirst r r rows of Rlast mr m − r rows of E E
Dimension r nr n − r r r mr

The row space and null space are in Rn R n , and their dimensions add to n. The column space and the left null space are in Rm R m , and their dimensions add to m.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值