Chapter 4 (Vector Spaces): Null spaces, column spaces, and linear transformations (零空间、列空间)

本文为《Linear algebra and its applications》的读书笔记

  • In applications of linear algebra, subspaces of R n \mathbb R^n Rn usually arise in one of two ways:
    • (1) as the set of all solutions to a system of homogeneous linear equations
    • (2) as the set of all linear combinations of certain specified vectors.

The Null Space of a Matrix

零空间

在这里插入图片描述

  • A more dynamic description of N u l Nul Nul A A A is the set of all x \boldsymbol x x in R n \mathbb R^n Rn that are mapped into the zero vector of R m \mathbb R^m Rm via the linear transformation x ↦ A x \boldsymbol x\mapsto A\boldsymbol x xAx. See Figure 1.
    在这里插入图片描述

零空间是 R n \R^n Rn 的子空间

在这里插入图片描述


EXAMPLE 2

Let H H H be the set of all vectors in R 4 \mathbb R^4 R4 whose coordinates a a a, b b b, c c c, d d d satisfy the equations a − 2 b + 5 c = d a - 2b + 5c = d a2b+5c=d and c − a = b c - a = b ca=b. Show that H H H is a subspace of R 4 \mathbb R^4 R4.

SOLUTION

  • H H H is the set of all solutions of the following system of homogeneous linear equations:
    在这里插入图片描述By Theorem 2, H H H is a subspace of R 4 \mathbb R^4 R4.

An Explicit Description of N u l Nul Nul A A A

其实就是找到 N u l Nul Nul A A A (basis)

EXAMPLE 3

Find a spanning set for the null space of the matrix
在这里插入图片描述
SOLUTION

  • The first step is to find the general solution of A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0 in terms of free variables. Row reduce the augmented matrix to reduced echelon form in order to write the basic variables in terms of the free variables:
    在这里插入图片描述
  • Every linear combination of u \boldsymbol u u, v \boldsymbol v v, and w \boldsymbol w w is an element of N u l Nul Nul A A A and vice versa. Thus { u , v , w } \{\boldsymbol u,\boldsymbol v,\boldsymbol w\} {u,v,w} (the explicit description) is a spanning set for N u l   A Nul\ A Nul A.

Two points should be made about the solution of Example 3 that apply to all problems of this type where N u l   A Nul\ A Nul A contains nonzero vectors. We will use these facts later.

  • (1) The spanning set produced by the method in Example 3 is automatically linearly independent because the free variables are the weights on the spanning vectors.
    • For instance, look at the 2nd, 4th, and 5th entries in the solution vector in (3) and note that x 2 u + x 4 v + x 5 w x_2\boldsymbol u + x_4\boldsymbol v + x_5\boldsymbol w x2u+x4v+x5w can be 0 \boldsymbol 0 0 only if the weights x 2 , x 4 x_2, x_4 x2,x4, and x 5 x_5 x5 are all zero.
  • (2) When N u l   A Nul\ A Nul A contains nonzero vectors, the number of vectors in the spanning set for N u l   A Nul\ A Nul A equals the number of free variables in the equation A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0.

The Column Space of a Matrix

在这里插入图片描述
在这里插入图片描述

  • Note that a typical vector in C o l   A Col\ A Col A can be written as A x A\boldsymbol x Ax for some x \boldsymbol x x because the notation A x A\boldsymbol x Ax stands for a linear combination of the columns of A A A. That is,
    在这里插入图片描述The notation A x A\boldsymbol x Ax for vectors in C o l   A Col\ A Col A also shows that C o l   A Col\ A Col A is the range of the linear transformation x ↦ A x x\mapsto A\boldsymbol x xAx.

  • Recall that the columns of A A A span R m \mathbb R^m Rm if and only if the equation A x = b A\boldsymbol x = \boldsymbol b Ax=b has a solution for each b \boldsymbol b b. We can restate this fact as follows:

在这里插入图片描述

The Contrast Between N u l   A Nul\ A Nul A and C o l   A Col\ A Col A

EXAMPLE 5

  • Let
    在这里插入图片描述
    a. C o l   A Col\ A Col A is a subspace of R 3 \mathbb R^3 R3.
    b. N u l   A Nul\ A Nul A is a subspace of R 4 \mathbb R^4 R4.
  • When a matrix is not square, as in Example 5, the vectors in N u l   A Nul\ A Nul A and C o l   A Col\ A Col A live in entirely different “universes.” When A A A is square, N u l   A Nul\ A Nul A and C o l   A Col\ A Col A do have the zero vector in common, and in special cases it is possible that some nonzero vectors belong to both N u l   A Nul\ A Nul A and C o l   A Col\ A Col A.
  • A surprising connection between the null space and column space will emerge in Section 4.6, after more theory is available.

Kernel and Range of a Linear Transformation

线性变换的核与值域

  • Subspaces of vector spaces other than R n \mathbb R^n Rn are often described in terms of a linear transformation instead of a matrix. To make this precise, we generalize the definition given in Section 1.8.

在这里插入图片描述

  • The kernel (or null space) of such a T T T is the set of all u \boldsymbol u u in V V V such that T ( u ) = 0 T(\boldsymbol u)=\boldsymbol 0 T(u)=0 (the zero vector in W W W).
    • 如果把线性变换看作两个向量空间之间的同态映射,那么线性变换的核就是同态映射的同态核
  • The range of T T T is the set of all vectors in W W W of the form T ( x ) T(\boldsymbol x) T(x) for some x \boldsymbol x x in V V V .
  • If T T T happens to arise as a matrix transformation—say, T ( x ) = A x T(\boldsymbol x)=A\boldsymbol x T(x)=Ax for some matrix A A A—then the kernel and the range of T T T are just the null space and the column space of A A A.

  • It is not difficult to show that the kernel of T T T is a subspace of V V V. Also, the range of T T T is a subspace of W W W.
    在这里插入图片描述

  • In applications, a subspace usually arises as either the kernel or the range of an appropriate linear transformation.
    • For instance, the set of all solutions of a homogeneous linear differential equation (微分方程) turns out to be the kernel of a linear transformation. Typically, such a linear transformation is described in terms of one or more derivatives of a function. To explain this in any detail would take us too far afield at this point. So we consider only two examples. The first explains why the operation of differentiation is a linear transformation.

EXAMPLE 8

  • Let V V V be the vector space of all real-valued functions f f f defined on an interval [ a , b ] [a, b] [a,b] with the property that they are differentiable (可导) and their derivatives are continuous functions on [ a , b ] [a, b] [a,b]. Let W W W be the vector space C [ a , b ] C[a, b] C[a,b] of all continuous functions on [ a , b ] [a, b] [a,b], and let D : V → W D: V \rightarrow W D:VW be the transformation that changes f f f in V V V into its derivative f ′ f' f.
  • In calculus, two simple differentiation rules (微分法则) are
    在这里插入图片描述That is, D D D is a linear transformation.
    • It can be shown that the kernel of D D D is the set of constant functions on [ a , b ] [a, b] [a,b] and the range of D D D is the set W W W of all continuous functions on [ a , b ] [a, b] [a,b].

EXAMPLE 9

Define T : P 2 → R 2 T : \mathbb P^2 \rightarrow R^2 T:P2R2 by T ( p ) = [ p 0 p 1 ] T (\boldsymbol p)=\begin{bmatrix} \boldsymbol p_0 \\ \boldsymbol p_1 \end{bmatrix} T(p)=[p0p1]. For instance, if p ( t ) = 3 + 5 t + 7 t 2 \boldsymbol p(t)= 3 + 5t + 7t^2 p(t)=3+5t+7t2, then T ( p ) = [ 3 15 ] T (\boldsymbol p)=\begin{bmatrix} 3 \\ 15 \end{bmatrix} T(p)=[315]. Find a polynomial p \boldsymbol p p in P 2 \mathbb P^2 P2 that spans the kernel of T T T , and describe the range of T T T .

SOLUTION

  • If T ( p ) T(\boldsymbol p) T(p) is the zero vector, then p ( 0 ) = 0 \boldsymbol p(0) = 0 p(0)=0 and p ( 1 ) = 0 \boldsymbol p(1) = 0 p(1)=0. One such polynomial is p ( t ) = t ( t – 1 ) \boldsymbol p(t) = t(t – 1) p(t)=t(t1). Any other quadratic polynomial that vanishes at 0 and 1 must be a multiple of p \boldsymbol p p, so p \boldsymbol p p spans the kernel of T T T.
  • For the range of T T T, observe that the image of the constant 1 function is [ 1 1 ] \begin{bmatrix} 1 \\ 1 \end{bmatrix} [11], and the image of the polynomial t t t is [ 0 1 ] \begin{bmatrix} 0 \\ 1 \end{bmatrix} [01]. Denote these two images by u \boldsymbol u u and v \boldsymbol v v, respectively. Since the range of T T T is a subspace of R 2 \mathbb R^2 R2 that contains u \boldsymbol u u and v \boldsymbol v v, the range must contain all linear combinations of u \boldsymbol u u and v \boldsymbol v v. By inspection, u \boldsymbol u u and v \boldsymbol v v are linearly independent, so they span R 2 \mathbb R^2 R2. Thus the range of T T T must contain all of R 2 \mathbb R^2 R2.

EXAMPLE 10

Let H = S p a n { v 1 , v 2 } H = Span\{ \boldsymbol v_1,\boldsymbol v_2\} H=Span{v1,v2} and K = S p a n { v 3 , v 4 } K = Span\{ \boldsymbol v_3,\boldsymbol v_4\} K=Span{v3,v4}, where
在这里插入图片描述
H H H and K K K are planes in R 3 \mathbb R^3 R3 through the origin, and they intersect in a line through 0 \boldsymbol 0 0. Find a nonzero vector w \boldsymbol w w that generates that line.

SOLUTION

  • [Hint: w \boldsymbol w w can be written as c 1 v 1 + c 2 v 2 c_1\boldsymbol v_1 + c_2\boldsymbol v_2 c1v1+c2v2 and also as c 3 v 3 + c 4 v 4 c_3\boldsymbol v_3 + c_4\boldsymbol v_4 c3v3+c4v4. To build w \boldsymbol w w, solve the equation c 1 v 1 + c 2 v 2 = c 3 v 3 + c 4 v 4 c_1\boldsymbol v_1 + c_2\boldsymbol v_2=c_3\boldsymbol v_3 + c_4\boldsymbol v_4 c1v1+c2v2=c3v3+c4v4 for the unknown c j ’ s c_j ’s cjs.]
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值