在配置笔者之前已经安装了anaconda和pycharm,并安装了cpu版tensorflow
1.下载models,链接,笔者在D盘新建了文件夹作为其下载路径。
2.将D:\tensorflow_model\models\research\object_detection\protos中的proto文件使用protoc编译为py文件
笔者试了在cmd在D:\tensorflow_model\models\research路径下使用protoc object_detection/protos/*.proto --python_out=.命令出现‘’ object_detection/protos/*.proto: No such file or directory”错误。
后来下载了windows版3.7.1版protoc
解压在bin文件夹中找到命令前加上protoc.exe的路径,并且此版本下不能批处理(3.4版本可以批处理),因此命令中*需替换为具体文件名
对于其他proto文件依次操作即可得到所有的py文件。
3.安装 object_detection API
在D:\tensorflow_model\models\research路径下输入python object_detection/builders/model_builder_test.py命令发现模块不存在
在我的电脑右键属性中高级系统设置中环境变量中系统变量添加新的系统变量,将research和slim完整路径添加
再次在D:\tensorflow_model\models\research路径下输入python object_detection/builders/model_builder_test.py命令
运行正常,说明已经安装成功。
4. demo测试
笔者喜欢使用pycharm,因此使用py文件测试
在D:\tensorflow_model\models\research\object_detection路径下新建demo.py
# 一定要保存为UTF8的格式哦
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import matplotlib
import cv2
# Matplotlib chooses Xwindows backend by default.
matplotlib.use('Agg')
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from utils import label_map_util
from utils import visualization_utils as vis_util
##################### Download Model,如果本地已下载也可修改成本地路径
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# Download model if not already downloaded
if not os.path.exists(PATH_TO_CKPT):
print('Downloading model... (This may take over 5 minutes)')
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
print('Extracting...')
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
else:
print('Model already downloaded.')
##################### Load a (frozen) Tensorflow model into memory.
print('Loading model...')
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
##################### Loading label map
print('Loading label map...')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
##################### Helper code
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
##################### Detection
# 测试图片的路径,可以根据自己的实际情况修改
TEST_IMAGE_PATH = 'test_images/image1.jpg'
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
print('Detecting...')
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
print(TEST_IMAGE_PATH)
image = Image.open(TEST_IMAGE_PATH)
image_np = load_image_into_numpy_array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
print(TEST_IMAGE_PATH.split('.')[0] + '_labeled.jpg')
matplotlib.use('TkAgg') # 在此加上这句话,否则无法显示图片,上面某句话改变了backend的方式,未知
print(matplotlib.get_backend())
plt.figure(figsize=IMAGE_SIZE, dpi=300)
plt.imshow(image_np)
# 保存标记图片
plt.savefig(TEST_IMAGE_PATH.split('.')[0] + '_labeled.jpg')
# plt.show()
plt.ion() # 加上这句就显示了
plt.pause(100) # 显示秒数
plt.close()
正常运行
部分代码转自https://blog.csdn.net/sarsscofy/article/details/81111815谢谢。