【TensorFlow学习笔记】目标识别篇(三):Win10+Anaconda+tensorflow Object-detection API的环境搭建

本文详细介绍了在Windows 10上使用Anaconda和TensorFlow 1.0搭建Object Detection API的步骤,包括安装依赖库、编译Protobuf文件、安装TensorFlow model和slim,以及验证和测试API的过程。遇到的问题和解决方法也一并提供,适合初学者参考。
摘要由CSDN通过智能技术生成

在这里插入图片描述

导语

Tensorflow在更新1.0版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(https://github.com/tensorflow/models ),大大降低了开发难度,利用现成的网络结构,无论fine-tuning还是重新训练方便了不少。最近笔者终于跑通TensorFlow Object Detection API的ssd_mobilenet_v1模型,这里记录下如何完整跑通数据准备到模型使用的整个过程,相信对自己和一些同学能有所帮助。
Object Detection API提供了5种网络结构的预训练的权重,全部是用COCO数据集进行训练,这五种模型分别是SSD+mobilenet、SSD+inception_v2、R-FCN+resnet101、faster RCNN+resnet101、faster RCNN+inception+resnet101。各个模型的精度和计算所需时间如下。下面及介绍下如何使用Object Detection去训练自己的模型。



Step1 安装所需库和文件

Tensorflow Object Detection API 依赖以下库:
Protobuf 3.12
Pillow 1.0
lxml
tf Slim (which is included in the "tensorflow/models/research/"checkout)
Jupyter notebook
Matplotlib
Tensorflow

1、首先在D盘根目录下新建一个名为 tensorflow_gpu 的文件夹:
在这里插入图片描述
2、接着进入 tensorflow models下载页,下载模型。如果GitHub下载慢,推荐使用码云,使用方法参考教程

!!注意这里有个巨坑
models的版本必须和tensorflow的版本号一样,否则会报错,models的版本号在下图的位置可见

在这里插入图片描述

将下载的 models.zip 解压到刚创建的 D:\tensorflow_gpu 目录下,并把文件夹的名字改为 models,如下图所示:

在这里插入图片描述
在这里插入图片描述

回到 Anaconda Prompt 命令窗口,开始配置环境。
激活 tensorflow_gpu 虚拟空间,接着安装如下依赖包:

conda install -c anaconda protobuf

中间出现提问是否安装某些库,输入 y 然后回车。
在这里插入图片描述
继续安装依赖库:

pip install pillow lxml Cython jupyter matplotlib pandas opencv-python

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值