UVA 11538 Chess Queen

58 篇文章 0 订阅

因为是两个不一样的皇后(一黑一白),所以考虑顺序。(一开始以为是一样的,坑啊)

先考虑横向冲突的(设n为行,m为列,且n<=m,下同)那么对于放入每个格子都一样:

都是m-1中冲突方案,一共有n*m中方法,所以n*m*(m-1)

纵向的同理:n*m*(n-1)

对角线的呢?

我们先考虑坐下到右上的对角线(这个方向/)首先数格子:1,2,3,……n-1 ,n,n,n……,n ,n-1,……3,2,1, 其中有m-n+1个n

与上面的横向方法相同,对于放入放入一个对角线,假设个数为k那么就有k*(k-1)种冲突方案。(这个方向\的对角线相同,要*2)且故得

答案推荐用unsigned long long来保存.用cin/cout方便得多,当然追求速度的话还是用scanf/printf吧。

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int main()
{
	unsigned long long n,m;
	while(scanf("%llu%llu",&n,&m),n||m)
	{
		if(n>m) swap(n,m);
		//cout<< m*n*(m+n-2)+2*n*(n-1)*(3*m-n-1)/3<<endl;
		printf("%llu\n",m*n*(m+n-2)+2*n*(n-1)*(3*m-n-1)/3);
	}
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值