“谷歌版 MCP”来了!重磅开源 A2A 智能体交互新架构

大家好,我是玄姐。

昨天发布,“谷歌版 MCP”登场!

谷歌推出了 A2A 协议,即 Agent-to-Agent,这项协议使得 AI Agent 智能体能够在不同的生态系统中安全地进行协作,无需考虑框架或供应商的差异。

不同平台构建的 AI Agent 智能体之间可以实现通信、发现彼此的能力、协商任务并开展合作,企业可以通过专业的智能体团队处理复杂的工作流程。

重点:它是开源的。

Github 地址:https://github.com/google/A2A

不多说,让我们先来看一个演示。

利用 A2A 协议,招聘流程可以如此高效:

在谷歌的 Agentspace 统一界面中,招聘经理可以向自己的智能体下达任务,让其寻找与职位描述、工作地点和技能要求相匹配的候选人。

然后,该智能体立即与其他专业智能体展开互动,寻找潜在候选人。

用户会收到推荐人选,之后可以指示自己的智能体安排进一步的面试,面试环节结束后,还可以启动另一个智能体来协助进行背景调查。

1

MCP 架构设计与 A2A 架构设计区别与联系剖析

尽管市面上的大语言模型(LLMs)种类繁多,但大家在使用时其实都是通过 API 来与大模型交互的。这些大模型的接口通常遵循一些通用的规范,比如:  OpenAI 的标准。下面,我们就以 OpenAI 接口为例,来聊聊这些大模型都有哪些能力。

因此 Google 提出了一个新的 A2A(Agent-to-Agent) 协议概念。与此同时,MCP(Model Context Protocol) 也在逐步成为连接 LLM 与外部世界的标准。

QQ_1744247891015.png

那么,A2A 究竟是什么?它和 MCP 有什么不同?它们之间又是什么关系?对于我们 AI 学习者来说,理解这些协议对于把握 AI Agent 的发展方向至关重要。今天,就让我们结合 Google 的官方发布的信息,一起来深入了解一下。

1、为什么我们需要协议?

首先,我们要明白协议的重要性。无论是人类社会还是计算机世界,标准化的协议都是实现高效沟通和协作的基础。在 AI Agent 的世界里,协议主要解决两大互联领域的挑战:

第一、Agent 与 Tools(工具)的交互

Agent 需要调用外部 API、访问数据库、执行代码等。

第二、Agent 与 Agent(其他智能体或用户)的交互

Agent 需要理解其他 Agent 的意图、协同完成任务、与用户进行自然的对话。

标准化的协议能够大大降低不同系统、模型、框架之间集成的复杂度,促进整个生态的繁荣。

2、MCP:连接模型与世界的桥梁

在我们探索 A2A 之前,让我们先回顾一下大家可能已经熟悉的 MCP(Model Context Protocol)。

图片

定义:MCP 是一个新兴的开放标准,它的目的是将大语言模型(LLMs)与各种数据源、资源和工具连接起来。

核心作用:MCP 的核心作用是标准化模型与外部工具进行“函数调用”(Function Calling)等交互的方式。你可以把它想象成一个为大模型提供的标准化接口集,使大模型能够识别可用的工具,并了解如何利用这些工具。

关注点:MCP 主要关注智能体(Agent)如何高效地利用结构化的工具和数据来完成特定的任务。

3、A2A:开启 Agent 间自然协作的大门

让我们深入了解一下 A2A(Agent-to-Agent)协议。

定义:A2A 是一种应用层协议,其设计目的是使智能体(Agent)能够以一种自然的模态进行协作,类似于人与人之间的互动。

核心作用:A2A 专注于智能体之间的沟通与合作,以及智能体与用户之间的互动。它旨在使智能体能够像人类一样交流,传递意图、协商任务和共享信息。

关注点:A2A 的重点在于智能体作为“智能体”进行互动的能力,而不仅仅是作为工具的执行者。

示例:

用户与智能体的互动:用户(或代表用户的智能体)可以像与真人交谈一样对修理店智能体说:“给我看看左前轮的照片,似乎漏液了,这种情况多久了?” A2A 协议使得这种更自然、多轮次的对话式互动成为可能。

智能体之间的互动:修理店智能体在诊断出问题后,可能需要向零件供应商智能体查询某个零件的库存和价格。这种智能体之间的协作同样需要 A2A 协议来支持。

4、A2A 与 MCP 的关键区别

根据上述内容,我们可以概括出 A2A 和 MCP 之间的主要区别:

关注点的差异:

MCP:侧重于智能体(Agent)与工具/资源之间的交互,强调的是结构化的调用和数据获取。

A2A:侧重于智能体与智能体/用户之间的互动,强调的是更自然、更灵活的协作方式。

解决的问题的差异:

MCP:旨在解决如何让大语言模型(LLM)或智能体以标准化的方式使用外部工具和数据的问题。

A2A:旨在解决如何使不同的智能体能够像人类一样相互理解和协作的问题。

5、相辅相成而非取而代之:A2A 与 MCP 的协同效应

需要明确的是,A2A 与 MCP 并非相互排斥,而是相辅相成的关系。在构建复杂的智能体(Agent)应用时,这两种协议往往会被同时采用。

下图展示了一个典型的“智能体应用”架构:

    第一、核心智能体(可能包含子智能体)是基于智能体框架和大语言模型(LLM)构建的。

    第二、当智能体需要与外部的黑箱智能体(例如,Blackbox Agent 1, Blackbox Agent 2)进行协作沟通时,它会利用 A2A 协议。

    第三、当智能体需要访问结构化的资源、工具或数据时(例如,通过一个集中的 MCP 服务器),它会遵循 MCP 协议。

    第四、甚至外部智能体(比如 Blackbox Agent 2)也可能通过 MCP 获取有关核心智能体的信息(如图中的"Get agent card"操作)。

这个架构清楚地表明,智能体既需要 MCP 来“使用工具、获取资源”,也需要 A2A 来“与其他智能体对话、协作”。

6、对 AI 学习者来说意味着什么?

对于 AI 学习者而言,理解 A2A 和 MCP 的概念及其相互关系具有重要意义:

第一、掌握前沿趋势:了解这些协议有助于我们把握 AI Agent 领域为实现更强的自主性和协作性所做的最新努力。

第二、系统设计视角:在规划或设计未来的 AI 应用时,能够从协议层面思考如何集成不同的 Agent 和工具,从而构建更为复杂的系统。

第三、技术选型参考:当面对不同的 Agent 框架或平台时,可以关注它们是否支持或兼容类似 MCP 或 A2A 的协议,这可能会影响它们的互操作性和扩展性。

此外,谷歌已经与超过 50 家技术合作伙伴(例如 Atlassian、Box、Salesforce、SAP 等)和服务提供商建立了合作关系。这表明了行业对这些协议的认可和采用,对于 AI 学习者来说,也意味着这些协议可能会成为未来职业发展中的关键技能。

7、总结

A2A 和 MCP 是推动 AI 智能体(Agent)实现更高级互操作性的两个关键协议。MCP 专注于智能体与工具或资源的连接,标准化了函数调用过程;相对地,A2A 专注于智能体之间的自然协作和交流。这两个协议相辅相成,共同构成了未来复杂智能体应用的基础设施。

对于 AI 学习者来说,持续关注并理解这些协议的发展至关重要。这将帮助我们更好地掌握 AI 智能体技术的趋势,参与创造下一代智能应用程序。

PS:

【全新推出】为了帮助大家更好的掌握 AI 大模型适合的应用落地场景、应用开发技能,推荐大家加入《3天大模型应用开发项目实战直播训练营》,通过3天直播,带你快速掌握 Agent、RAG、Fine-tuning 微调、MCP、Prompt  等技能,让大家快速掌握企业级 AI 大模型应用实战能力。此训练营刚上新,原价199元,为了回馈粉丝的支持,早鸟价19元,点击以下报名。


2

3天大模型应用开发项目实战直播课

3天的直播课,带你快速掌握 Agent、RAG、Fine-tuning 微调、MCP、Prompt  等 AI 大模型应用开发核心技术和企业级项目实践经验。

直播模块一:Agent 智能体开发实战篇

  1. Agent 智能体技术原理深度解读

  2. Agent 规划能力深度剖析与实践 

  3. Agent 行动能力深度剖析与实现

  4. Agent 工具调用之 MCP 深度剖析 

  5. Agent 智能体 ReAct 机制深度解读 

  6. 从0到1,手搓代码实现企业级智能客服

直播模块二:RAG 知识库 & Fine-tuning 微调篇

  1. RAG 知识库核心技术解读 

  2. RAG 知识库知识切分剖析与实践 

  3. RAG 知识库两阶段检索剖析与实践 

  4. RAG 知识库项目全流程深度实践 

  5. LoRA 微调技术原理剖析 

  6. RAG 和 Fine-tuning 微调技术选型

直播模块三:综合案例实战:Agent + RAG + Fine-tuning 微调 + MCP + Prompt 案例实战篇

  1. Agentic RAG 项目需求分析

  2. Agentic RAG 架构设计--知识库管理

  3. Agentic RAG 架构设计--在线联网问答

  4. Agentic RAG 架构设计--效果评估

  5. Agentic RAG 架构设计--模型弹性扩容

  6. Agentic RAG 核心代码实现

基于 Agent、RAG、Fine-tuning 微调、MCP、Prompt,从需求分析、架构设计、架构技术选型、硬件资料规划、核心代码落地、服务治理等全流程实践,深度学习企业级 AI 大模型应用落地项目全流程重点难点问题解决。

3天时间,你能学会什么?

在真实项目实践中,你会获得4项硬核能力:

第一、全面掌握 DeepSeek 大模型、Agent、RAG、Fine-tuning 微调、MCP、Prompt 的原理、架构和实现方法,掌握核心技术精髓。

第二、熟练使用 AI 大模型应用开发平台:LangChain、LangGraph、LlamaIndex、AutoGen、Spring AI Alibaba、Swarm 等主流开发框架,为企业级技术实践打下坚实基础。

第三、通过企业级项目实战演练,能够独立完成基于 Agent、RAG、Fine-tuning 微调、MCP、Prompt 的 AI 大模型应用的适用场景、设计开发和维护,真正学会解决企业级实际问题的能力。

第四、为职业发展提供更多可能性,无论是晋升加薪还是转行跳槽,提升核心技术竞争力。

限时优惠:

【全新推出】,刚上线,原价199元,回馈粉丝们支持,早鸟价19元!赶快加入把~~

3

添加助教直播学习

购买后,一定记得添加助理,否则无法进行直播学习👇

图片

参考来源:

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/

⬇戳”阅读原文“,立即报名!

END

### MCP智能体简介 MCP(Multi-Agent Communication Protocol)是一种专为多智能体通信设计的标准协议。随着 `cursor` 和 `cline` 等编程工具的流行,以及多智能体应用如 Manu 的成功案例,MCP 已逐渐成为行业内的事实标准[^1]。 #### 协议的核心功能 MCP 提供了一个标准化的框架,旨在解决不同 AI 智能体之间互操作性的难题。其核心目标包括但不限于以下几个方面: - **简化集成流程**:通过统一接口减少开发者的负担。 - **增强互操作性**:使不同的智能体能够在同一环境中无缝协作。 - **提高可扩展性**:支持更多类型的智能体加入现有系统而不需大幅修改架构。 - **促进社区合作**:鼓励开发者共享资源并共同改进生态系统。 - **提升自主能力**:赋予单个或多个智能体更强的学习能力和决策效率[^2]。 --- ### 使用教程概览 以下是关于如何开始使用 MCP 进行智能体开发的一些基本指导: #### 安装依赖项 首先需要安装必要的库文件来运行基于 MCP 架构的应用程序。通常情况下可以通过 Python pip 命令完成这一过程: ```bash pip install mcp-server ``` 如果项目涉及前端展示,则可能还需要额外配置 Websocket 支持或其他相关服务端组件。 #### 初始化服务器实例 创建一个的 Python 脚本来启动本地测试环境下的 MCP server : ```python from mcp_server import MCPServer def main(): server = MCPServer(host="0.0.0.0", port=8765) try: server.start() except KeyboardInterrupt: print("\nStopping MCP Server...") server.stop() if __name__ == "__main__": main() ``` 上述代码片段定义了一个简单的入口函数用于管理生命周期事件 (start/stop),并通过指定参数绑定到特定网络地址及端口号上监听客户端请求。 #### 配置消息处理器 为了让各个节点间有效传递数据包,在实际部署前还需定制化实现某些回调逻辑处理收到的信息内容。下面给出一个基础示范本作为参考模板: ```python class CustomMessageHandler(MCPServer.MessageHandler): def handle_message(self, message): """Override this method to define custom behavior.""" sender_id = message['sender'] payload = message['payload'] response_data = { 'status': 'success', 'message': f'Received your request {payload}' } self.send_response(sender_id, response_data) server.set_message_handler(CustomMessageHandler()) ``` 这里我们继承自默认类并重写了 `handle_message()` 方法来自定义接收到消息后的动作序列;最后记得调用 setter 将更过的对象重关联回去生效! --- ### 实际应用场景举例说明 假设现在有一个场景需求——构建一套智能家居控制系统,其中包含温度调节器、灯光控制器等多个独立运作的小型设备模块。借助于 MCP 技术方案可以轻松达成如下几个重要特性要求: 1. 各子单元无需关心底层传输细节即可互相发送指令命令; 2. 增第三方硬件产品时只需遵循既定规范接入即兼容整个平台体系结构; 3. 用户界面部分可通过图形化方式直观呈现当前状态分布情况便于日常维护检修工作开展等等优势特点均得以体现出来。 --- 问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值