深度学习论文阅读
文章平均质量分 94
对深度学习经典文章进行翻译,阅读。
AiCharm
新星计划第三季人工智能赛道第一名-人工智能领域实力新星获得者,阿里云社区博客专家,华为云享专家
展开
-
深度学习论文阅读目标检测篇(七)中文版:YOLOv4《Optimal Speed and Accuracy of Object Detection》
有大量的技巧可以提高卷积神经网络(CNN)的精度。需要在大 数据集下对这种技巧的组合进行实际测试,并需要对结果进行理论论 证。某些技巧仅在某些模型上使用和专门针对某些问题,或只针对小 规模的数据集;而一些技巧,如批处理归一化、残差连接等,适用于 大多数的模型、任务和数据集。我们假设这种通用的技巧包括加权残 差连接(Weighted-Residual-Connection,WRC)、跨小型批量连接 (Cross-Stage-Partial-connection,CSP)、Cross mini-Batch原创 2022-06-25 09:00:00 · 1396 阅读 · 2 评论 -
深度学习论文阅读目标检测篇(七)中英对照版:YOLOv4《Optimal Speed and Accuracy of Object Detection》
There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy. Practical testing of combinations of such features on large datasets, and theoretical justification of the result, is required. Some features opera原创 2022-06-23 09:00:00 · 1557 阅读 · 0 评论 -
深度学习论文阅读目标检测篇(五)中英对照版:YOLOv2《 YOLO9000: Better, Faster, Stronger》
深度学习论文阅读目标检测篇(五)中文版:YOLOv2《 YOLO9000: Better, Faster, Stronger》Abstract摘要1. Introduction1.引言2. Better2. 更好3. Faster3. 更快4. Stronger4. 更强5. Conclusion5. 结论Abstract Abstract We introduce YOLO9000, a state-of-the-art, real-time object detection system tha原创 2022-06-03 09:00:00 · 741 阅读 · 0 评论 -
深度学习论文阅读目标检测篇(六)中英对照版:YOLOv3《 An Incremental Improvement》
We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained this new network that’s pretty swell. It’s a little bigger than last time but more accurate. It’s still fast though, don’t worry. At 320×320 YOLO原创 2022-06-07 09:00:00 · 1367 阅读 · 0 评论 -
深度学习论文阅读目标检测篇(五)中文版:YOLOv2《 YOLO9000: Better, Faster, Stronger》
深度学习论文阅读目标检测篇(五)中文版:YOLOv2《 YOLO9000: Better, Faster, Stronger》摘要1.引言2. 更好3. 更快4. 更强5. 结论摘要 摘要我们引入了一个先进的实时目标检测系统YOLO9000,可以检测超过9000个目标类别。首先,我们提出了对YOLO检测方法的各种改进,既有新发明的一些东西,也参考了前人的工作。改进后的模型YOLOv2在PASCALVOC和COCO等标准检测任务上性能是最好的。使用一种新颖的、多尺度训练方法,同样的YOLOv2模型可以原创 2022-06-02 09:00:00 · 552 阅读 · 0 评论 -
深度学习论文阅读目标检测篇(六)中文版:YOLOv3《 An Incremental Improvement》
我们对 YOLO 进行了一系列更新!它包含一堆小设计,可以使 系统的性能得到更新。我们也训练了一个新的、比较大的神经网络。 虽然比上一版更大一些,但是精度也提高了。不用担心,它的速度依 然很快。YOLOv3 在 320×320 输入图像上运行时只需 22ms,并能达 到 28.2mAP,其精度和 SSD 相当,但速度要快上 3 倍。使用之前 0.5 IOU mAP 的检测指标,YOLOv3 的效果是相当不错。YOLOv3 使用 Titan X GPU,其耗时 51ms 检测精度达到 57.9 AP50,原创 2022-06-09 09:00:00 · 455 阅读 · 1 评论 -
深度学习论文阅读目标检测篇(四)中英文对照版:YOLOv1《 You Only Look Once: Unified, Real-Time Object Detection》
深度学习论文阅读目标检测篇(四):YOLOv1《 You Only Look Once: Unified, Real-Time Object Detection》中英文对照版Abstract 摘要1. Introduction 引言2. Unified Detection 统一的检测2.1 Network Design 网络设计2.2 Training 训练2.3 Inference 推断2.4 Limitations of YOLO YOLO 的缺点3. Comparison to Other Dete原创 2022-05-06 16:53:25 · 1420 阅读 · 0 评论 -
深度学习论文阅读目标检测篇(四)中文版:YOLOv1《 You Only Look Once: Unified, Real-Time Object Detection》
深度学习论文阅读目标检测篇(四)中文版:YOLOv1《YouOnlyLookOnce:Unified,Real-TimeObjectDetection》摘要1.引言2. 统一的检测2.1NetworkDesign网络设计2.2Training训练2.3Inference推断2.4YOLO的缺点3.ComparisontoOtherDetectionSystems与其它检测系统的比较4.实验4.1与其它实时系统的比较4.2VOC2007ErrorAnalysisVOC2007检测误差分析4.3结合FastR-原创 2022-05-12 09:00:00 · 1579 阅读 · 1 评论 -
深度学习论文阅读目标检测篇(二):Fast R-CNN《Fast R-CNN》
深度学习论文阅读(八):Fast R-CNN《Fast R-CNN》Abstract 摘要1. Introduction 引言1.1 RCNN and SPPnet1.2 Contributions 贡献2. Fast R-CNN architecture and training Fast R-CNN 架构与训练2.1 The RoI pooling layer RoI 池化层2.2 Initializing from pre-trained networks 从预训练网络初始化2.3 Finetunin原创 2022-04-22 09:00:00 · 956 阅读 · 0 评论 -
深度学习论文阅读目标检测篇(三):Faster R-CNN《 Towards Real-Time Object Detection with Region Proposal Networks》
深度学习论文阅读目标检测篇(三):Faster R-CNN《 Towards Real-Time Object Detection with Region Proposal Networks》Abstract 摘要1. Introduction 引言2. RELATED WORK 相关工作3. FASTER R-CNN3.1 Region Proposal Networks region proposal网络3.1.1 Anchors3.1.2 Loss Function 损失函数3.1.3 Trainin原创 2022-04-26 09:00:00 · 1695 阅读 · 0 评论 -
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
深度学习论文阅读(七):R-CNN《Rich feature hierarchies for accurate object detection and semantic segmentation》Abstract 摘要1.Introduction 引言2.Object detection with R-CNN 使用 R-CNN 做物体检测2.1 Module design Region proposals 模块设计区域推荐2.2Test-time detection 测试阶段的物体检测2.3 Traini原创 2022-04-19 22:58:09 · 5238 阅读 · 0 评论 -
深度学习论文阅读图像分类篇(六):SENet《Squeeze-and-Excitation Networks》
深度学习论文阅读(六):SENet《Squeeze-and-Excitation Networks》Abstract 摘要1. Introduction 引言2. Related Work 相关工作Abstract 摘要Convolutional neural networks are built upon the convolution operation, which extracts informative features by fusing spatial and channel-wise原创 2022-04-09 16:02:39 · 3691 阅读 · 0 评论 -
深度学习论文阅读图像分类篇(五):ResNet《Deep Residual Learning for Image Recognition》
深度学习论文阅读(五):ResNet《Deep Residual Learning for Image Recognition》Abstract 摘要1. Introduction 引言2. Related Work 相关工作3. Deep Residual Learning 深度残差学习3.1. Residual Learning 残差学习3.2 Identity Mapping by Shortcuts 快捷恒等映射3.3 Network Architectures 网络架构3.4. Implement原创 2022-04-04 12:10:32 · 6444 阅读 · 0 评论 -
深度学习论文阅读(四):GoogLeNet《Going Deeper with Convolutions》
GoogLeNet《Going Deeper with Convolutions》外文翻译Abstract 摘要1.Introduction 引言2. Related Work 相关工作3.Motivation and High Level Considerations 动机和高层思考4.Architectural Details 架构细节5.GoogLeNet6.Training Methodology 训练方法7. ILSVRC 2014 Classification Challenge Setup a原创 2022-04-01 09:00:00 · 3097 阅读 · 0 评论 -
深度学习论文阅读图像分类篇(三):VGGNet《Very Deep Convolutional Networks for Large-Scale Image Recognition》
VGGNet《Very Deep Convolutional Networks for Large-Scale Image Recognition》外文翻译Abstract 摘要1.INTRODUCTION 引言2. CONVNET CONFIGURATIONS ConvNet 配置2.1 ARCHITECTURE 架构2.2 CONFIGURATIONS 配置2.3DISCUSSION 讨论3.CLASSIFICATION FRAMEWORK 分类框架3.1TRAINING 训练3.2 TESTING原创 2022-03-28 23:33:37 · 3983 阅读 · 0 评论 -
深度学习论文阅读图像分类篇(一):AlexNet《ImageNet Classification with Deep Convolutional Neural Networks》
AlexNet《ImageNet Classification with Deep Convolutional Neural Networks》外文翻译Abstract 摘要1.Introduction 引言2.The Dataset 数据集3.The Architecture 架构3.1 非线性ReLU 函数3.2在多 GPU 上训练3.3局部响应归一化3.4重叠池化3.5整体架构4.减少过拟合4.1 Data Augmentation数据增强4.2Dropout5.Details of learnin原创 2022-03-23 09:00:00 · 1746 阅读 · 0 评论 -
深度学习论文阅读图像分类篇(二):ZFNet《Visualizing and Understanding Convolutional Networks》
《Visualizing and Understanding Convolutional Networks》外文翻译Abstract 摘要1.Introduction 引言1.1 Related Work 相关工作2. Approach 方法2.1 Visualization with a Deconvnet 通过反卷积可视化3.Training Details 训练细节4.Convnet Visualization 卷积网络可视化4.1 Architecture Selection 框架选择4.2 Oc原创 2022-03-25 09:00:00 · 1938 阅读 · 0 评论 -
论文笔记:SpectralFormer Rethinking Hyperspectral Image Classification With Transformers_外文翻译
论文笔记:SpectralFormer Rethinking Hyperspectral Image Classification With Transformers_外文翻译摘要:关键字:1.介绍:2.SpectralFormer2.1.Transformer简评2.2.SpectralFormer综述2.3.GroupWise频谱嵌入2.4.跨层自适应融合2.6.Spatial–SpectralSpectralFormer3.实验3.1.数据描述3.2.实验设置3.2.1评价指标:3.2.2与最先进的主原创 2022-03-13 19:41:17 · 7567 阅读 · 1 评论 -
Spatial-Spectral Transformer for Hyperspectral Image Classification_外文翻译
笔者在毕设期间翻译了此论文。Spatial-Spectral Transformer for Hyperspectral Image Classification_外文翻译摘要关键字1.前言2.用于高光谱图像分类的空间-光谱变换器2.1基于CNN的HSI空间特征提取2.2用于HSI分类的光谱空间转换器2.3动态特征增强3.用于高光谱图像分类的异质传输空间-光谱变换器3.1.两个数据集的异质性映射3.2.建议用于HSI分类的T-SST3.3.建议用于HSI分类的T-SST-L4.实验结果4.1.高光谱数据集原创 2022-03-12 21:04:52 · 6663 阅读 · 2 评论