密度聚类学习总结

密度聚类的典型算法是DBSCAN

DBSCAN是由高密度区域和低密度区域划分的,更准确的说,DBSCAN算法的原理是由低密度区域划分出来高密度区域。因此,DBSCAN可以发现任何形状的簇。

不像k-means,k-means的本质是默认每一簇的数据服从高斯分布(且方差也要相等),因此,簇的形状应该是凸形的。

阅读更多
文章标签: cluster
上一篇手把手教你写一个抢讲座的脚本
下一篇模型融合指南
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭