Wide and Deep论文笔记加理解

文论提出了学习过程中核心的两个概念,memorization and generalization,记忆与一般化

memorization 指记忆,即规则

generalization指泛化,即归纳

我们一般学习的内容是归纳而来的,但是也需要加上一些例外的规则,才能够学习到真实的世界。

a wide linear model 即学习的是规则部分,

a deep neural network即学习的是泛化部分,

我们知道,一般含有类别特征的特征集都是很稀疏的,这种特征集常出现在推荐系统,搜索和排序问题中。作者声称Wide & Deep Learning很适用于这种特征集。

对于wide部分,需要人工特征工程,wide会记录下特征的一系列特征的组合,但没出现的不会学习到。

而dnn部分通过embedding层做为输入进行学习,可以学习到高阶特征,如可以学习到汉堡与炸鸡相似,进而得出较好的推荐效果。

单独的wide部分可以理解为典型的FM,当新来一批数据给出推荐结果。单独的deep部分可以理解为目标是学习embedding层,查找与query最相似的item。

两者相结合的话,相当于结合两者优势(具体场景描述可以见google ai blog)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值