数学工具--概率统计

概率统计

Hoeffding不等式,Markov不等式

Markov不等式

(Markov不等式)对于任何非负随机变量X, ∀ ϵ > 0 \forall \epsilon > 0 ϵ>0,有:
P ( X ≥ ϵ ) ≤ E ( X ) ϵ P(X \geq \epsilon) \leq \frac{E(X)}{\epsilon} P(Xϵ)ϵE(X)

Proof: E ( X ) = ∫ 0 ∞ x f ( x ) d x ≥ ∫ ϵ ∞ x f ( x ) d x ≥ ∫ ϵ ∞ ϵ f ( x ) d x = ϵ P ( X ≥ ϵ ) \begin{aligned} E(X) &= \int_0^\infty xf(x)dx\\ & \geq \int_\epsilon^\infty xf(x)dx\\ & \geq \int_\epsilon^\infty \epsilon f(x)dx\\ & = \epsilon P(X \geq \epsilon) \end{aligned} E(X)=0xf(x)dxϵxf(x)dxϵϵf(x)dx=ϵP(Xϵ)
离散情况只需要将积分变累加即可。


Hoeffding不等式

Hoeffding引理)X是一个随机变量且满足: E ( X ) = 0 E(X)=0 E(X)=0 a ≤ X ≤ b a \leq X \leq b aXb。因此对于任何 t > 0 t >0 t>0,有:
E ( e t X ) ≤ e t 2 ( b − a ) 2 8 E(e^{tX}) \leq e^{\frac{t^2(b-a)^2}{8}} E(etX)e8t2(ba)2

Proof: 由于 e t X e^{tX} etX是下凸函数( f ′ ′ ( x ) > 0 f''(x)>0 f(x)>0),由下凸函数性质,有:
e t X ≤ b − X b − a e t a + X − a b − a e t b e^{tX} \leq \frac{b-X}{b-a}e^{ta} + \frac{X-a}{b-a}e^{tb} etXbabXeta+baXaetb
两边对 X X X取期望:
E ( e t X ) ≤ b b − a e t a + − a b − a e t b = e ϕ ( t ) E(e^{tX}) \leq \frac{b}{b-a}e^{ta} + \frac{-a}{b-a}e^{tb} = e^{\phi(t)} E(etX)babeta+baaetb=eϕ(t)
则:
ϕ ( t ) = l o g ( b b − a e t a + − a b − a e t b ) = t a + l o g ( b b − a + − a b − a e t ( b − a ) ) \phi(t) = log(\frac{b}{b-a}e^{ta} + \frac{-a}{b-a}e^{tb}) = ta + log(\frac{b}{b-a} + \frac{-a}{b-a}e^{t(b-a)}) ϕ(t)=log(babeta+baaetb)=ta+log(bab+baaet(ba))
ϕ ′ ( t ) = a − a e t ( b − a ) b b − a − a b − a e t ( b − a ) = a − a b b − a e − t ( b − a ) − a b − a \phi'(t) = a - \frac{ae^t(b-a)}{\frac{b}{b-a}-\frac{a}{b-a}e^{t(b-a)}} = a - \frac{a}{\frac{b}{b-a}e^{-t(b-a)}-\frac{a}{b-a}} ϕ(t)=ababbaaet(ba)aet(ba)=ababet(ba)baaa
ϕ ′ ′ ( t ) = − a b e − t ( b − a ) [ b b − a e − t ( b − a ) − a b − a ] 2 ⟶ α = − a b − a − a b ( b − a ) 2 e − t ( b − a ) ( b − a ) 2 [ ( 1 − α ) e − t ( b − a ) + α ] 2 = α ( 1 − α ) e − t ( b − a ) ( b − a ) 2 [ ( 1 − α ) e − t ( b − a ) + α ] 2 = α [ ( 1 − α ) e − t ( b − a ) + α ] ( 1 − α ) e − t ( b − a ) [ ( 1 − α ) e − t ( b − a ) + α 2 ] ( b − a ) 2 ⟶ u = α [ ( 1 − α ) e − t ( b − a ) + α ] u ( 1 − u ) ( b − a ) 2 ≤ 1 4 ( b − a ) 2 \begin{aligned} \phi''(t) &= \frac{-abe^{-t(b-a)}}{[\frac{b}{b-a}e^{-t(b-a)}-\frac{a}{b-a}]^2}\\ & \overset{\alpha = \frac{-a}{b-a}}{\longrightarrow} \frac{\frac{-ab}{(b-a)^2}e^{-t(b-a)} (b-a)^2}{[(1-\alpha)e^{-t(b-a)}+\alpha]^2}\\ & =\frac{\alpha(1-\alpha)e^{-t(b-a)}(b-a)^2}{[(1-\alpha)e^{-t(b-a)}+\alpha]^2}\\ & =\frac{\alpha}{[(1-\alpha)e^{-t(b-a)}+\alpha]}\frac{(1-\alpha)e^{-t(b-a)}}{[(1-\alpha)e^{-t(b-a)}+\alpha^2]}(b-a)^2\\ & \overset{u = \frac{\alpha}{[(1-\alpha)e^{-t(b-a)}+\alpha]}}{\longrightarrow} u(1-u)(b-a)^2 \leq \frac{1}{4}(b-a)^2 \end{aligned} ϕ(t)=[babet(ba)baa]2abet(ba)α=baa[(1α)et(ba)+α]2(ba)2abet(ba)(ba)2=[(1α)et(ba)+α]2α(1α)et(ba)(ba)2=[(1α)et(ba)+α]α[(1α)et(ba)+α2](1α)et(ba)(ba)2u=[(1α)et(ba)+α]αu(1u)(ba)241(ba)2
由泰勒展开,对任何 t > 0 t>0 t>0,存在 θ ∈ [ 0 , t ] \theta \in [0,t] θ[0,t],使得:
ϕ ( t ) = ϕ ( 0 ) + t ϕ ′ ( 0 ) + t 2 2 ϕ ′ ′ ( θ ) ≤ 0 + 0 + t 2 2 ⋅ 1 4 ( b − a ) 2 = t 2 ( b − a ) 2 8 \phi(t) = \phi(0) + t\phi'(0) + \frac{t^2}{2}\phi''(\theta) \leq 0 + 0 + \frac{t^2}{2}\cdot \frac{1}{4}(b-a)^2 = \frac{t^2(b-a)^2}{8} ϕ(t)=ϕ(0)+tϕ(0)+2t2ϕ(θ)0+0+2t241(ba)2=8t2(ba)2
得证。

Hoeffding不等式 X 1 , ⋯   , X m X_1,\cdots,X_m X1,,Xm是相互独立的随机变量并且所有 X i X_i Xi的取值在 a i a_i ai b i b_i bi之间。那么对于任何 ϵ > 0 \epsilon >0 ϵ>0 S m = ∑ i = 1 m X i S_m = \sum_{i=1}^m X_i Sm=i=1mXi,有:
P [ S m − E [ S m ] ≥ ϵ ] ≤ e − 2 ϵ 2 ∑ i = 1 m ( b i − a i ) 2 P [ S m − E [ S m ] ≤ − ϵ ] ≤ e − 2 ϵ 2 ∑ i = 1 m ( b i − a i ) 2 \begin{aligned} P[S_m - E[S_m]\geq \epsilon] \leq e^{\frac{-2\epsilon^2}{\sum_{i=1}^m (b_i-a_i)^2}}\\ P[S_m - E[S_m]\leq -\epsilon] \leq e^{\frac{-2\epsilon^2}{\sum_{i=1}^m (b_i-a_i)^2}} \end{aligned} P[SmE[Sm]ϵ]ei=1m(biai)22ϵ2P[SmE[Sm]ϵ]ei=1m(biai)22ϵ2

Proof:
P [ S m − E [ S m ] ≥ ϵ ] = P [ e t ( S m − E [ S m ] ) ≥ e t ϵ ] ≤ e − t ϵ E [ e t ( S m − E [ S m ] ) ] ( M a r k o v 不 等 式 ) = e − t ϵ ∏ i = 1 m E [ e t ( X i − E [ X i ] ) ] ( 相 互 独 立 性 ) ≤ e − t ϵ ∏ i = 1 m e t 2 ( b i − a i ) 2 8 ( H o e f f d i n g 引 理 ) = e − t ϵ e t 2 ∑ i = 1 m t 2 ( b i − a i ) 2 8 ≤ e − 2 ϵ 2 ∑ i = 1 m ( b i − a i ) 2 \begin{aligned} P[S_m - E[S_m]\geq \epsilon] &= P[e^{t(S_m - E[S_m])}\geq e^{t\epsilon}]\\ & \leq e^{-t\epsilon}E[e^{t(S_m - E[S_m])}]\qquad\qquad (Markov不等式)\\ & = e^{-t\epsilon}\prod_{i=1}^m E[e^{t(X_i - E[X_i])}]\qquad\quad(相互独立性)\\ & \leq e^{-t\epsilon}\prod_{i=1}^m e^{\frac{t^2(b_i-a_i)^2}{8}}\qquad\qquad (Hoeffding 引理)\\ & = e^{-t\epsilon} e^{t^2\sum_{i=1}^m\frac{t^2(b_i-a_i)^2}{8}}\\ & \leq e^{\frac{-2\epsilon^2}{\sum_{i=1}^m(b_i-a_i)^2}} \end{aligned} P[SmE[Sm]ϵ]=P[et(SmE[Sm])etϵ]etϵE[et(SmE[Sm])](Markov)=etϵi=1mE[et(XiE[Xi])]()etϵi=1me8t2(biai)2(Hoeffding)=etϵet2i=1m8t2(biai)2ei=1m(biai)22ϵ2
最后一步是取 t = 4 ϵ ∑ i = 1 m ( b i − a i ) 2 t = \frac{4\epsilon}{\sum_{i=1}^m(b_i-a_i)^2} t=i=1m(biai)24ϵ
得证。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值