吴恩达机器学习笔记2

目录

多变量线性回归(Linear Regression with Multiple Variables)

多维特征

符号说明

多变量梯度下降

梯度下降法实践1-特征缩放  Feature Scaling

梯度下降法实践2-学习率

特征和多项式回归

正规方程

正规方程与梯度下降比较

正规方程的实现

正规方程及不可逆性


多变量线性回归(Linear Regression with Multiple Variables)

多维特征

在之前房价预测的基础上,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为\small (x_1,x_2,...,x_n)

符号说明

\small n特征的数量
\small x^{(i)}一个向量(vector),代表第\small i个训练实例,是特征矩阵中的第行
\small x^{(i)}_j代表特征矩阵中第\small i行的第\small j个特征,即第\small i个训练实例的第\small j个特征

支持多变量的假设\small h表示为

                                                              \small h_\theta (x) = \theta _0+\theta _1x_1+\theta _2x_2+...+\theta _nx_n

这个公式中有\small n+1个参数和\small n个变量,为了使得公式能够简化一些,引入\small x_0=1,则公式转化为:

                                                              \small h_\theta (x) = \theta _0x_0+\theta _1x_1+\theta _2x_2+...+\theta _nx_n

这样是为了方便矩阵运算

此时模型中的参数是一个\small n+1维的向量,任何一个训练实例也都是\small n+1维的向量,特征矩阵的\small X维度是\small m \times (n+1) 。因此公式可以简化为:\small h_\theta (x)=\theta ^TX,其中上标\small T代表矩阵转置。

多变量梯度下降

与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价函数是所有建模误差的平方和,即:

                                                             \small J(\theta_1 ,\theta_2 ,...,\theta_n )=\frac{1}{2m} \sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2

其中,

                                                             \small h_\theta (x)=\theta ^TX= \theta _0+\theta _1x_1+\theta _2x_2+...+\theta _nx_n

我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。 多变量线性回归的批量梯度下降算法为:

即:

求导数后得到:

\small n>=1时,

\small {​{\theta }_{0}}:={​{\theta }_{0}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({​{h}_{\theta }}({​{x}^{(i)}})-{​{y}^{(i)}})}x_{0}^{(i)}

\small {​{\theta }_{1}}:={​{\theta }_{1}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({​{h}_{\theta }}({​{x}^{(i)}})-{​{y}^{(i)}})}x_{1}^{(i)}

\small {​{\theta }_{2}}:={​{\theta }_{2}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({​{h}_{\theta }}({​{x}^{(i)}})-{​{y}^{(i)}})}x_{2}^{(i)}

我们开始随机选择一系列的参数值,计算所有的预测结果后,再给所有的参数一个新的值,如此循环直到收敛。

梯度下降法实践1-特征缩放  Feature Scaling

在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。

以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。

解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。最简单的方法是令\small x_n=\frac{x_n-\mu _n}{s_n},其中\small \mu_n是平均值,\small s_n是标准差。

梯度下降法实践2-学习率

上次说到,梯度下降算法的每次迭代受到学习率的影响,如果学习率\small \alpha过小,则达到收敛所需的迭代次数会非常高;如果学习率\small \alpha过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

可以考虑下面的一组学习率:

                                                                       \small \alpha =0.01,0.03,0.3,1,3,10

特征和多项式回归

如房价预测问题,

                                                                  \small h_\theta (x)=\theta_0 +\theta_1\times frontage+\theta_2\times depth

其中\small {x_{1}}=frontage(临街宽度),\small x_{2}}=depth(纵向深度),\small x=frontage*depth=area(面积),则\small {h_{\theta}}\left( x \right)={\theta_{0}}+{\theta_{1}}x.线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方模型:\small h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2},或者三次方模型\small h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2}+{\theta_{3}}{x_{3}^3}

根据函数图形特性,我们还可以使:

                                                                            \small {​{​{h}}_{\theta}}(x)={​{\theta }_{0}}\text{+}{​{\theta }_{1}}(size)+{​{\theta}_{2}}{​{(size)}^{2}} 

或者:

                                                                            \small {​{​{h}}_{\theta}}(x)={​{\theta }_{0}}\text{+}{​{\theta }_{1}}(size)+{​{\theta }_{2}}\sqrt{size}

注意:如果我们采用多项式回归模型,在运行梯度下降算法前,特征缩放非常有必要。

正规方程

目前为止一直在学习梯度下降算法。但对于某些线性回归问题,正规方程方法是更好的解决方案。

例如对于下面的例子:

正规方程就是使用求导的方式来求最小的参数的,这一点和中学学的类似,即 \frac{\partial }{\partial \theta _j}J(\theta _i)=0。假设我们的训练集特征矩阵为X (包含了x_0=1)并且我们的训练集结果为向量y,则利用正规方程解出向量

                                                                             \theta =(X^TX)^{-1}X^Ty

如下图例子:

注意:对于那些不可逆的矩阵(通常是因为特征之间不独立,如同时包含英尺为单位的尺寸和米为单位的尺寸两个特征,也有可能是特征数量大于训练集的数量),正规方程方法是不能用的。

正规方程与梯度下降比较

               梯度下降                                                        正规方程
需要选择学习率\alpha不需要\alpha
需要多次迭代一次运算得出
当特征数量n大时也能较好适用需要计算X^TX如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为O(n^3),通常来说n小于10000 时还是可以接受的
适用于各种类型的模型只适用于线性模型,不适合逻辑回归模型等其他模型

正规方程的实现

import numpy as np
    
 def normalEqn(X, y):
    
   theta = np.linalg.inv(X.T@X)@X.T@y #X.T@X等价于X.T.dot(X)
    
   return theta

正规方程及不可逆性

对于X^TX结果不可逆原因是什么?怎么办呢?

  • 例如,在预测住房价格时,如果x_1是以英尺为尺寸规格计算的房子,x_2是以平方米为尺寸规格计算的房子,同时,你也知道1米等于3.28英尺 ( 四舍五入到两位小数 ),这样,你的这两个特征值将始终满足约束:x_1=x_2\ast (3.28)^2。 实际上,你可以用这样的一个线性方程,来展示那两个相关联的特征值,矩阵X^TX将是不可逆的。
  • 在你想用大量的特征值,尝试实践你的学习算法的时候,可能会导致矩阵X^TX的结果是不可逆的。 具体地说,在m小于或等于n的时候,例如,有m等于10个的训练样本也有n等于100的特征数量。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值