数据预处理——特征缩放
最新推荐文章于 2025-10-20 17:23:40 发布
本文介绍了特征缩放在机器学习中的作用,特别是在处理不同特征尺度问题时。标准化和归一化是两种常见方法,标准化适合正态分布的数据,归一化适用于涉及距离度量的模型。文章详细解释了如何选择方法、实施流程以及在Python中使用sklearn库进行操作的示例。
本文介绍了特征缩放在机器学习中的作用,特别是在处理不同特征尺度问题时。标准化和归一化是两种常见方法,标准化适合正态分布的数据,归一化适用于涉及距离度量的模型。文章详细解释了如何选择方法、实施流程以及在Python中使用sklearn库进行操作的示例。
3350
666

被折叠的 条评论
为什么被折叠?