【算法修炼】丑数系列

丑数系列

在这里插入图片描述
丑数的判定很简单,只需要看是否能被2或者3或者5的质因数除尽。

class Solution {
    public boolean isUgly(int n) {
        if (n == 0) return false;
        while (n % 2 == 0) n /= 2;
        while (n % 3 == 0) n /= 3;
        while (n % 5 == 0) n /= 5;
        return n == 1;
    }
}

在这里插入图片描述
dp[i]代表第 i 个丑数,dp[1]=1,后续的丑数都必须由前面的丑数 * 2 或者 * 3 或者 * 5得到,所以可以用三个指针分别指向2、3、5三个质因数对应的dp中的丑数位置。每次都取三者中最小的丑数放入dp数组。还需要注意为了避免重复记录丑数,不要使用if-else结构。

class Solution {
    public int nthUglyNumber(int n) {
        int[] dp = new int[n + 1];
        dp[1] = 1;
        int p2 = 1, p3 = 1, p5 = 1;
        for (int i = 2; i <= n; i++) {
            int num2 = dp[p2] * 2, num3 = dp[p3] * 3, num5 = dp[p5] * 5;
            dp[i] = Math.min(num2, Math.min(num3, num5));
            // 不能写成if-else形式,因为当dp[i]=6时,可以由p2、p3产生
            // 为避免重复记录丑数,需要让p2 p3都++
            if (dp[i] == num2) p2++;
            if (dp[i] == num3) p3++;
            if (dp[i] == num5) p5++;
        }
        return dp[n];
    }
}

在这里插入图片描述
是上一题的升级版,质因数不再是2 3 5,而是有给定的primes,和上一题一样的思路,有几个primes就设定几个指针,分别记录质因数为primes[0] primes[1] … 的在dp数组中需要乘的系数的位置。

class Solution {
    public int nthSuperUglyNumber(int n, int[] primes) {
        int[] dp = new int[n + 1];
        dp[1] = 1;
        int m = primes.length;
        // m个质因数,对应m个指针
        int[] idx = new int[m];
        Arrays.fill(idx, 1);
        for (int i = 2; i <= n; i++) {
            int min = Integer.MAX_VALUE;
            for (int j = 0; j < m; j++) {
                min = Math.min(min, primes[j] * dp[idx[j]]);
            }
            dp[i] = min;
            for (int j = 0; j < m; j++) {
                if (primes[j] * dp[idx[j]] == min) idx[j]++;
            }
        }
        return dp[n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@u@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值