丑数系列
丑数的判定很简单,只需要看是否能被2或者3或者5的质因数除尽。
class Solution {
public boolean isUgly(int n) {
if (n == 0) return false;
while (n % 2 == 0) n /= 2;
while (n % 3 == 0) n /= 3;
while (n % 5 == 0) n /= 5;
return n == 1;
}
}
dp[i]代表第 i 个丑数,dp[1]=1,后续的丑数都必须由前面的丑数 * 2 或者 * 3 或者 * 5得到,所以可以用三个指针分别指向2、3、5三个质因数对应的dp中的丑数位置。每次都取三者中最小的丑数放入dp数组。还需要注意为了避免重复记录丑数,不要使用if-else结构。
class Solution {
public int nthUglyNumber(int n) {
int[] dp = new int[n + 1];
dp[1] = 1;
int p2 = 1, p3 = 1, p5 = 1;
for (int i = 2; i <= n; i++) {
int num2 = dp[p2] * 2, num3 = dp[p3] * 3, num5 = dp[p5] * 5;
dp[i] = Math.min(num2, Math.min(num3, num5));
// 不能写成if-else形式,因为当dp[i]=6时,可以由p2、p3产生
// 为避免重复记录丑数,需要让p2 p3都++
if (dp[i] == num2) p2++;
if (dp[i] == num3) p3++;
if (dp[i] == num5) p5++;
}
return dp[n];
}
}
是上一题的升级版,质因数不再是2 3 5,而是有给定的primes,和上一题一样的思路,有几个primes就设定几个指针,分别记录质因数为primes[0] primes[1] … 的在dp数组中需要乘的系数的位置。
class Solution {
public int nthSuperUglyNumber(int n, int[] primes) {
int[] dp = new int[n + 1];
dp[1] = 1;
int m = primes.length;
// m个质因数,对应m个指针
int[] idx = new int[m];
Arrays.fill(idx, 1);
for (int i = 2; i <= n; i++) {
int min = Integer.MAX_VALUE;
for (int j = 0; j < m; j++) {
min = Math.min(min, primes[j] * dp[idx[j]]);
}
dp[i] = min;
for (int j = 0; j < m; j++) {
if (primes[j] * dp[idx[j]] == min) idx[j]++;
}
}
return dp[n];
}
}