深度可分离卷积

在计算资源受限制的移动端设备上,常规的卷积操作由于计算量大,经常难以满足实际运行速度的要求,这时深度可分离卷积(Depthwise Separable Convolution)就派上了用场。深度可分离卷积是由Depthwise(DW)卷积与Pointwise(PW)卷积组成。该结构和常规卷积类似,可用来提取特征,但相比常规卷积,其参数量和运算成本较低,所以在一些轻量级网络中经常用到此结构,如MobileNet、ShuffleNet。

常规卷积

对于一幅128x128像素、3通道彩色输入图像(尺寸128x128x3),经过一个包含4个Filter的3x3卷积层(Filter的个数对应输出通道数3x3x3x4),最终输出4个特征图(Feature Map),

此时,卷积层共有4个Filter,每个Filter包含3个Kernel,每个Kernel的大小为3×3。因此卷积层的参数数量可以用如下公式来计算:

卷积核W x 卷积核H x 输入通道数 x 输出通道数

N_std = 4 × 3 × 3 × 3 = 108

计算量(即:卷积核W x 卷积核H x (图片W-卷积核W+1) x (图片H-卷积核H+1) x 输入通道数 x 输出通道数):

C_std =3*3*(5-3+1)*(5-3+1)*3*4=972

深度可分离卷积

深度可分离卷积可分为两个过程,一个是逐通道卷积(Depthwise Convolution),一个是逐点卷积(Pointwise Convolution)。

逐通道卷积

Depthwise Convolution的一个卷积核负责一个通道,一个通道只被一个卷积核卷积,这个过程产生的Feature Map通道数和输入的通道数一样。

一张5×5像素、三通道彩色输入图片(shape为5×5×3),Depthwise Convolution首先经过第一次卷积运算,DW完全是在二维平面内进行。卷积核的数量与上一层的通道数相同,通道和卷积核一一对应,所以一个3通道的卷积核经过运算后生成了3个Feature Map,(如果有same padding则尺寸与输入层相同为5×5),如下图所示:

卷积核的shape即为:卷积核W x 卷积核H x 输入通道数

其中一个Filter只包含一个大小为3×3的Kernel,卷积部分的参数个数计算如下(即为:卷积核Wx卷积核Hx输入通道数):

N_depthwise = 3 × 3 × 3 = 27

 计算量为(即:卷积核W x 卷积核H x (图片W-卷积核W+1) x (图片H-卷积核H+1) x 输入通道数

C_depthwise=3x3x(5-3+1)x(5-3+1)x3=243

 Depthwise Convolution完成后的Feature map数量与输入层通道数相同,无法扩展Feature map。而且这种运算对输入层的每个通道独立进行卷积运算,没有有效的利用不同通道在相同空间位置上的feature信息,因此需要Pointwise Convolution来将这些Feature map进行组合生成新的Feature map。

逐点卷积

Pointwise Convolution的运算与常规卷积非常相似,他的卷积核大小1x1xM,M为上一层的通道数,所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的Feature map。有几个卷积核就有几个Feature map,卷积核的shape即为:

1 x 1 x 输入通道数 x 输出通道数

由于采用1x1的卷积方式,此步中涉及到的参数个数可以计算为:

1 x 1 x 输入通道数 x 输出通道数

N_pointwise = 1 × 1 × 3 × 4 = 12

 计算量(即为:1 x 1 特征层W x 特征层H x 输入通道数 x 输出通道数):

C_pointwise = 1 × 1 × 3 × 3 × 3 × 4 = 108

经过Pointwise Convolution之后,同样输出了4张Feature map,与常规卷积的输出维度相同。

参数对比

常规卷积的参数个数为:

N_std = 4 × 3 × 3 × 3 = 108

深度可分离卷积的参数个数由两部分参数相加得到:

N_depthwise = 3 × 3 × 3 = 27
N_pointwise = 1 × 1 × 3 × 4 = 12
N_separable = N_depthwise + N_pointwise = 39

相同的输入,同样是得到4张Feature map,Separable Convolution的参数个数是 常规卷积的约1/3,因此在参数量相同的前提下,采用Separable Convolution的神经网络层数可以做的更深。

计算量对比

常规卷积的计算量为:

C_std =3*3*(5-3+1)*(5-3+1)*3*4=972

Separable Convolution的参数由两部分相加得到:

C_depthwise=3x3x(5-3+1)x(5-3+1)x3=243
C_pointwise = 1 × 1 × 3 × 3 × 3 × 4 = 108
C_separable = C_depthwise + C_pointwise = 351

相同的输入,同样是得到4张Feature map,Separable Convolution的计算量是常规卷积的约1/3。因此,在计算量相同的情况下,Depthwise Separable Convolution可以将神经网络层数可以做的更深。 

转载:https://zhuanlan.zhihu.com/p/165632315

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值