【离散数学】数理逻辑 第二章 谓词逻辑(1) 谓词、量词(全称和存在量词、全总个体域和特性谓词)

本文深入探讨了离散数学中的谓词和量词概念,包括谓词的定义、个体常元与变元、谓词与函数、命题的关系,以及全称量词和存在量词的用法。通过实例展示了如何使用谓词和量词来表达复杂的逻辑关系,并解释了全总个体域和特性谓词的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社


1. 谓词、量词

1.1 谓词

1.1.1 谓词定义、意义

一个简单的推理示例,大前提:所有自然数都有大于它的素数;小前提: 2 100 2^{100} 2100 是自然数;结论: 2 100 2^{100} 2100 有大于它的素数。这一推理显然正确,但由于两个前提和结论都是简单命题,它在命题逻辑中得不到证明。同样的还有,大前提:所有人都会死;小前提:苏格拉底是人;结论:苏格拉底会死。另外,给定三个简单命题:甲是老师,乙是老师,丙是老师,命题符号化时要使用三个不同符号,不能反映“是老师”这一共同特征。

为了解决命题逻辑存在的这些问题,引入了谓词的概念。谓词对简单命题进一步分析,找出所描述的对象以及对象间的关系抽象出同类命题描述的一般模式。如下所示,命题中出现的“2”、“5”、“7”等是具体的个体对象,“…是偶数”刻画对象 x x x 的性质,“…小于…”刻画对象 x x x y y y 之间的关系,“…在…和…之间”刻画对象 x , y , z x, y, z x,y,z 之间的关系:

示例模式
2是偶数 x x x 是偶数
5小于7 x x x 小于 y y y
点a在b和c之间 x x x y y y z z z 之间

用于表示具体或特定个体的符号称为个体常元,常用 a, b, c 等表示。用于表示任意个体的变元称为个体变元,常用 x, y, z 等表示,个体变元的取值范围称为该变元的论域 domain of discourse个体域,是一个集合,通常使用大写字母表示。

定义1.1.1 刻画单个个体的特性多个个体间关系的模式称为谓词 predicate

谓词可以简单描述为,由一个谓词符和若干具有固定次序的个体常元或变元组成的表达式。带有 n   ( n ≥ 0 ) n\ (n \ge 0) n (n0)个体的谓词称为 n n n 元谓词,如下所示:

  • 零元谓词,即 n = 0 n = 0 n=0 时,谓词就是一个命题;
  • 一元谓词用于刻画个体的特性,由一个表示个体特性的大写字母(称为特性谓词符一元谓词符一元关系符)和一个个体常元或变元组成的表达式表示,如 P ( a ) ,   Q ( x ) P(a),\ Q(x) P(a), Q(x) 等;
  • n n n 元谓词用于刻画 n n n 个个体之间的关系 n ≥ 2 n \ge 2 n2 时),由一个表示 n n n 个个体关系的大写字母(称为 n n n 元谓词符 n n n 元关系符)和 n n n 个个体常元或变元组成的表达式表示,如 R ( a 1 , a 2 , … , a n ) R(a_1, a_2, \dots, a_n) R(a1,a2,,an) Q ( x 1 , x 2 , … , x n ) Q(x_1, x_2, \dots, x_n) Q(x1,x2,,xn) 等;

因此,“ x x x 是偶数”可以用谓词 P ( x ) P(x) P(x) 表示, P ( 2 ) P(2) P(2) P ( 3 ) P(3) P(3) 分别表示 “2是偶数”、“3是偶数”;“ x x x 小于 y y y”可以用谓词 Q ( x , y ) Q(x, y) Q(x,y) 表示, Q ( 5 , 7 ) Q(5, 7) Q(5,7) Q ( 6 , 5 ) Q(6, 5) Q(6,5) 分别表示“5小于7”、“6小于5”;“ x x x y y y z z z 之间”可以用谓词 R ( x , y , z ) R(x, y, z) R(x,y,z) 表示。

特别地,某些谓词符/关系符直接使用特殊的习惯符号,如 = , ≠ , < , > , ≤ , ≥ =, \ne, \lt, \gt, \le, \ge =,=,<,>,, 等,表达方式可采用中缀表示法,如 x ≠ y , x ≤ y x \ne y, x \le y x=y,xy 等。

谓词也可以使用联结词进行组合,此处的意义与命题逻辑完全相同,如 S ( x ) S(x) S(x) 表示 x x x 是学习委员, W ( x ) W(x) W(x) 表示 x x x 是数学课代表,则 S ( x ) ∧ W ( x ) S(x) \land W(x) S(x)W(x) 表示 x x x 既是学习委员也是数学课代表。

1.1.2 谓词与函数、谓词与命题

设有谓词 P ( x 1 , x 2 , … , x n ) P(x_1, x_2, \dots, x_n) P(x1,x2,,xn) D 1 , D 2 , … , D n D_1, D_2, \dots, D_n D1,D2,,Dn 是个体域集合,其中 x i ∈ D i x_i \in D_i xiDi 。显而易见, n n n 元谓词 P ( x 1 , x 2 , … , x n ) P(x_1, x_2, \dots, x_n) P(x1,x2,,xn) 是从 D 1 × D 2 × ⋯ × D n D_1\times D_2\times \dots \times D_n D1×D2××Dn 到集合 { T , F } \{T, F\} {T,F} 上的一个 n n n 元函数。因此,有时也把 P ( x 1 , x 2 , … , x n ) P(x_1, x_2, \dots, x_n) P(x1,x2,,xn) 称为 n n n 元命题函数 n = 0 n = 0 n=0 时,谓词 P P P 退化为命题

由于谓词 P ( x 1 , x 2 , … , x n ) P(x_1, x_2, \dots, x_n) P(x1,x2,,xn) 仅是一个函数,它没有真假值。只有将谓词符 P P P 指定为一个确定的 n n n 元函数,将每个个体变元均代入相应个体域中确定的个体常元,才能得到一个具有确定真假值的命题

例1 用谓词表示以下命题:
(1)小王是大学生。
(2)老张是小张的父亲。
(3)0.7介于0和1之间。
解答:
(1)设一元谓词 A ( x ) A(x) A(x) 表示 x x x 是大学生,个体常元 c c c 表示小王,则 A ( c ) A(c) A(c) 表示小王是大学生。
(2)设二元谓词 B ( x , y ) B(x,y) B(x,y) 表示 x x x y y y 的父亲,个体常元 a a a 表示老张, b b b 表示小张,则 B ( a , b ) B(a, b) B(a,b) 表示老张是小张的父亲。
(3)设三元谓词 G ( x , y , z ) G(x, y, z) G(x,y,z) 表示 x x x 介于 y y y z z z 之间,个体常元 a a a 表示0.7, b b b 表示0, c c c 表示1,则 G ( a , b , c ) G(a, b, c) G(a,b,c) 表示0.7介于0和1之间。


1.2 量词

仅仅使用谓词,还不能很好地表达日常生活中的所有命题,如“所有的人都要呼吸”、“有些有理数是自然数”等。为了刻画这类表示全称判断特称判断的命题,需要引入量词 quantifier

1.2.1 全称量词 ∀ \forall

∀ x \forall x x 表示“对于所有的 x x x”、“对于任一 x x x”、“对于每一个 x x x” 。符号 ∀ \forall 称为全称量词 universal quantifier x x x 是量词 ∀ \forall 作用变元指导变元。例如:

  • ∀ x P ( x ) \forall xP(x) xP(x) 表示“对于所有的 x x x 均有 P ( x ) P(x) P(x)
  • ∀ x ¬ P ( x ) \forall x\lnot P(x) x¬P(x) 表示“对于所有的 x x x 均有 ¬ P ( x ) \lnot P(x) ¬P(x)
  • ¬ ∀ x P ( x ) \lnot \forall x P(x) ¬xP(x) 表示“并非对于所有的 x x x 均有 P ( x ) P(x) P(x)
  • ¬ ∀ x ¬ P ( x ) \lnot \forall x \lnot P(x) ¬x¬P(x) 表示“并非对于所有的 x x x 均有 ¬ P ( x ) \lnot P(x) ¬P(x)

1.2.2 存在量词 ∃ \exist

∃ x \exist x x 表示“存在某个 x x x”或“至少有一个 x x x ”。符号 ∃ \exist 称为存在量词 existential quantifier x x x 是量词 ∃ \exist 作用变元指导变元。例如:

  • ∃ x P ( x ) \exist xP(x) xP(x) 表示“存在 x x x 满足 P ( x ) P(x) P(x)
  • ∃ x ¬ P ( x ) \exist x\lnot P(x) x¬P(x) 表示“存在 x x x 满足 ¬ P ( x ) \lnot P(x) ¬P(x)
  • ¬ ∃ x P ( x ) \lnot \exist x P(x) ¬xP(x) 表示“不存在 x x x 满足 P ( x ) P(x) P(x)
  • ¬ ∃ x ¬ P ( x ) \lnot \exist x \lnot P(x) ¬x¬P(x) 表示“不存在 x x x 满足 ¬ P ( x ) \lnot P(x) ¬P(x)

1.2.3 全称量化、存在量化

在谓词 P ( x ) P(x) P(x) Q ( x , y ) Q(x, y) Q(x,y) 等前面加上全称量词 ∀ x \forall x x 或存在量词 ∃ x \exist x x ,则称个体变元 x x x全称量化存在量化。要指出的是,如果论域是有限集合,则对某个个体变元的量化可以用命题形式表示(翻译到命题逻辑?)。设论域 D = { a 1 , a 2 , … , a n } D = \{ a_1, a_2, \dots, a_n\} D={a1,a2,,an} ,则有:
∀ x P ( x ) ⇔ P ( a 1 ) ∧ P ( a 2 ) ∧ ⋯ ∧ P ( a n ) ∃ x P ( x ) ⇔ P ( a 1 ) ∨ P ( a 2 ) ∨ ⋯ ∨ P ( a n ) \begin{aligned} \forall xP(x) \Leftrightarrow P(a_1) \land P(a_2) \land \dots \land P(a_n)\\ \exist xP(x) \Leftrightarrow P(a_1) \lor P(a_2) \lor \dots \lor P(a_n) \end{aligned} xP(x)P(a1)P(a2)P(an)xP(x)P(a1)P(a2)P(an)

对于一个谓词,如果为谓词符指定具体含义,为每个个体变元指定论域,则谓词中的所有变元都会被量词量化,则该命题成为一个具有真假值的命题。

例2 如果论域是整数,指出下列命题的真假值。
(a) ∀ x ( x < x + 1 ) \forall x ( x \lt x + 1) x(x<x+1)
(b) ∃ x ( x < x + 1 ) \exist x(x \lt x + 1) x(x<x+1)
(c) ∃ x ( x = 3 ) \exist x (x = 3) x(x=3)
(d) ∀ x ( x = 3 ) \forall x(x = 3) x(x=3)
解答:如果论域是整数,则 (a), (b), (c) 是真,(d) 是假。这里 x x x全称量化存在量化

1.2.4 全总个体域、特性谓词及其代入规则

由例2可知,量化后所得命题的真值与个体变元的论域相关。事实上,不同个体变元可以采用完全不同的论域,但不同变元一起讨论时用不同的论域会带来不便,于是引入一个统一的个体论域——全总个体域,它包括所有个体变元所能代表的所有可能的个体。除非特别说明,否则论域默认为全总个体域。此时对个体变元的变化范围,要用特性谓词来加以限制

例3 符号化下列命题。
(a)所有的人都是要死的。
(b)有些人不怕死。
解答:设 D ( x ) D(x) D(x) 表示 x x x 是要死的, H ( x ) H(x) H(x) 表示 x x x 是人, F ( x ) F(x) F(x) 表示 x x x 不怕死。

  • 如果论域是人类,则(a)符号化为 ∀ x D ( x ) \forall x D(x) xD(x) ,(b)符号化为 ∃ x F ( x ) \exist x F(x) xF(x)
  • 如果论域是全总个体域,则大不相同,需要用特性谓词来加以限制:
    • (a)实际上等价于“对于一切 x x x ,如果 x x x 是人,那么 x x x 是要死的”,应表示为 ∀ x ( H ( x ) → D ( x ) ) \forall x(H(x) \to D(x)) x(H(x)D(x)) ,而非 ∀ x ( H ( x ) ∧ D ( x ) ) \forall x(H(x) \land D(x)) x(H(x)D(x))
    • (b)实际上等价于“存在一些 x x x x x x 是人,并且 x x x 不怕死”,应表示为 ∃ x ( H ( x ) ∧ F ( x ) ) \exist x(H(x) \land F(x)) x(H(x)F(x)) ,而非 ∃ x ( H ( x ) → F ( x ) ) \exist x (H(x) \to F(x)) x(H(x)F(x))
      在这里插入图片描述

例3中的 H ( x ) H(x) H(x) 就是特性谓词(即一元谓词),用以刻画个体是“人”这一特性。特性谓词的作用是,限定论域为 (全总个体域中)满足该谓词的所有个体构成的一个特定的论域。例3中特性谓词 H ( x ) H(x) H(x) 的作用如下图所示:

把特性谓词加入到公式时,有以下两条规则:

  • 规则1:对于全称量词,特性谓词作为条件式的前件加入;
  • 规则2:对于存在量词,特性谓词作为合取式的合取项加入;

例4 在全总个体域上,使用谓词和量词表示下列命题公式。
(a)所有的有理数都是实数;
(b)虽然存在一些大于0的有理数,但是并不是大于0的实数都是有理数。
(c)对于任何一个有理数,都存在大于该有理数的实数。
解答:设 R ( x ) R(x) R(x) x x x 是实数, Q ( x ) Q(x) Q(x) x x x 是有理数, G ( x , y ) G(x, y) G(x,y) x > y x > y x>y ,则:
(a) ∀ x ( Q ( x ) → R ( x ) ) \forall x(Q(x) \to R(x)) x(Q(x)R(x)) ——特性谓词 Q ( x ) Q(x) Q(x) 对于 ∀ \forall ,作为条件式的前件
(b) ∃ x ( Q ( x ) ∧ G ( x , 0 ) ) ∧ ¬ ∀ x ( ( R ( x ) ∧ G ( x , 0 ) ) → Q ( x ) ) \exist x (Q(x) \land G(x, 0)) \land \lnot \forall x \big((R(x) \land G(x, 0)) \to Q(x) \big) x(Q(x)G(x,0))¬x((R(x)G(x,0))Q(x)) ——特性谓词 R ( x ) R(x) R(x) 对于 ∀ \forall ,作为条件式的前件;特性谓词 Q ( x ) Q(x) Q(x) 对于 ∃ \exist ,作为合取式的合取项。
(c) ∀ x ( Q ( x ) → ∃ y ( R ( y ) ∧ G ( y , x ) ) ) \forall x(Q(x) \to \exist y(R(y) \land G(y, x))) x(Q(x)y(R(y)G(y,x))) ——特性谓词 Q ( x ) Q(x) Q(x) 对于 ∀ \forall ,作为条件式的前件;特性谓词 R ( y ) R(y) R(y) 对于 ∃ \exist ,作为合取式的合取项。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值