【离散数学】集合论 第四章 函数与集合(5) 集合的基数、可数与不可数集合

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 国外经典教材)离散数学及其应用 第八版 Discrete Mathematics and Its Applications, Eighth Edition ,作者是 Kenneth H. Rosen ,袁崇义译,机械工业出版社
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
  • 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
  • (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
  • 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社


4.5 集合的基数、可数与不可数集合

4.5.1 集合的基数、等势

有限集合的大小可以用「集合中元素的个数」来度量,很容易比较。但对于无限集合来讲,集合的大小不能简单地用所包含元素的个数来描述。因此,对于无限集合大小的度量和比较,必须寻求新的途径。

无限集合有许多有趣的现象。比如,希尔伯特旅馆 Hilbert's paradox of the Grand Hotel 的故事:一家旅店拥有无穷多个客房,每个房间恰能住一位旅客,并已经客满。当日又有一位旅客投宿,店主欣然接纳,他让1号房间的客人挪到2号房间,2号房间的客人挪到3号房间,依次类推,从而腾出1号房间让新来的旅客入住,这样所有的旅客都有房间住宿。

用集合论的语言表述这一问题——即正整数集合 Z + = { 1 , 2 , 3 , …   } \Z^+ = \{ 1, 2, 3, \dots \} Z+={ 1,2,3,}(旅馆的房间数)与自然数集合 N = { 0 , 1 , 2 , 3 , …   } \N = \{0, 1, 2, 3, \dots \} N={ 0,1,2,3,}(旅馆入住的客人数)具有同样多的元素,可是 N \N N 显然比 Z + \Z^+ Z+ 多一个元素 0 0 0 啊?这一问题困扰了数学家多年,直到19世纪70年代,康托研究无限集合的度量问题时,提出了集合基数的概念,这个问题才得以彻底解决。

定义4.5.1 度量集合 A A A 大小的数称为集合 A A A基数 cardinality,记为 ∣ A ∣ |A| A
定义4.5.2 若集合 A A A B B B 能够建立一个双射函数,则称集合 A A A 与集合 B B B 等势 Equinumerosity 或 `,记为 A ∼ B A\sim B AB ∣ A ∣ = ∣ B ∣ |A| = |B| A=B

【例1】证明正整数集合 Z + \Z^+ Z+ 与自然数集合 N \N N 等势。
证明:定义函数 f : N → Z + ,   f ( x ) = x + 1 f: \N \to \Z^+,\ f(x) = x+1 f:NZ+, f(x)=x+1 f f f 显然是双射的,所以 N ∼ Z + \N \sim \Z^+ NZ+

【例2】证明实数集合 R \R R 与其真子集 ( 0 , 1 ) (0, 1) (0,1) 等势。
证明:定义函数 f : R → ( 0 , 1 ) ,   f ( x ) = 1 π arctan ⁡ ( x ) + 1 2 f: \R \to (0, 1),\ f(x) = \dfrac{1}{\pi} \arctan(x) + \dfrac{1}{2} f:R(0,1), f(x)=π1arctan(x)+21 f f f 显然是双射的,所以 R ∼ ( 0 , 1 ) \R \sim (0, 1) R(0,1)

定理4.5.1 等势是任何集合簇上的等价关系。
证明 设有集合簇 S S S
(1)任取 A ∈ S A\in S AS ,构造函数 f : A → A ,   f ( x ) = x f: A\to A,\ f(x) = x f:AA, f(x)=x 。显然, f f f 是双射函数,则 A ∼ A A \sim A AA ,因此等势关系是自反的。
(2)任取 A , B ∈ S A, B\in S A,BS ,若 A ∼ B A\sim B AB ,则 A A A B B B 能够建立一个双射函数 f f f ,则 f − 1 f^{-1} f1 是从 B B B A A A 的双射函数(见【离散数学】集合论 第四章 函数与集合(4) 复合函数与逆函数定义4.4.2),故有 B ∼ A B \sim A BA ,因此等势关系是对称的。
(3)任取 A , B , C ∈ S A, B, C\in S A,B,CS ,若 A ∼ B A\sim B AB B ∼ C B \sim C BC ,则存在 A A A B B B 的双射函数 f f f B B B C C C 的双射函数 g g g ,那么有 g ⋄ f g\diamond f gf 是从 A A A C C C 的一个双射函数(见【离散数学】集合论 第四章 函数与集合(4) 复合函数与逆函数定理4.4.3),故有 A ∼ C A \sim C AC ,因此等势关系是传递的。

定义4.5.3 含有有限个(包括0个)元素的集合称为有限集合 finite set 。不是有限集合的集合称为无限集合 infinite set

关于非空有限集合和无限集合,还可以给出另一种定义。给定 N k = { 0 , 1 , 2 , … , k − 1 }   ( k ∈ Z + ) \N_k = \{0, 1, 2, \dots, k - 1\}\ (k \in \Z^+) Nk={ 0,1,2,,k1} (kZ+) 是含有 k k k 个元素的有限集合,如果存在 N k \N_k Nk A A A 的双射函数,则称 A A A 是有限集合,且集合 A A A 的基数是 k k k(当然,空集 ∅ \varnothing 也是有限集合,其基数为 0 0 0 );反之,设 A A A 是非空集合,若对于任何 k ∈ Z + ,   N k = { 0 , 1 , 2 , … , k − 1 } k \in \Z^+,\ \N_k = \{ 0, 1, 2, \dots, k - 1\} kZ+, Nk={ 0,1,2,,k1} ,均不存在 N k \N_k Nk A A A 的双射函数,则称集合 A A A 是无限集合。

定理4.5.2 自然数集合 N \N N 是无限集合。
证明 任取 k ∈ Z + k \in \Z^+ kZ+ ,设 f f f 是从 { 0 , 1 , 2 , … , k − 1 } \{0, 1, 2, \dots, k - 1\} { 0,1,2,,k1} N \N N 的任意函数。现在令 t = 1 + max ⁡ { f ( 0 , f ( 1 ) , f ( 2 ) , … , f ( k − 1 ) } t = 1 + \max \{ f(0, f(1), f(2), \dots, f(k - 1)\} t=1+max{ f(0,f(1),f(2),,f(k1)} ,显然 t ∈ N t \in \N tN 。因为不存在 x ∈ { 0 , 1 , 2 , … , k − 1 } x \in \{0, 1, 2, \dots, k - 1\} x{ 0,1,2,,k1} 使得 f ( x ) = t f(x) = t f(x)=t ,所以 f f f 不可能是满射的,故 f f f 也不可能是双射的。因为 k k k f f f 是任意的,这说明 k k k 不是有限集合,而是无限集合。

定理4.5.3 有限集合的任意子集是有限集合。
证明 A A A 是一个有限集合, B B B A A A 的任一子集。
(1)若 B B B 是空集 ∅ \varnothing ∣ ∅ ∣ = 0 |\varnothing| = 0 =0 ,因此 B B B 是有限集合。
(2)若 B B B 是非空集合,那么 A A A 也是非空集合。因为 A A A 是有限集合,设 ∣ A ∣ = k |A| = k A=k ,所以存在 N k \N_k Nk A A A 的双射函数 f f f ,使得 A = { f ( 0 ) , f ( 1 ) , … , f ( k − 1 ) } A = \{ f(0), f(1), \dots , f(k - 1)\} A={ f(0),f(1),,f(k1)} 。由于 B ⊆ A B\subseteq A BA ,现构造从 N t \N_t Nt B B B 的函数 g g g 如下:
① 置 i = 0 , t = 0 i = 0, t = 0 i=0,t=0
② 如果 f ( i ) ∈ B f(i) \in B f(i)B ,令 g ( t ) = f ( i ) g(t) = f(i) g(t)=f(i) ;否则,转步骤④;
③ 令 t = t + 1 t = t + 1 t=t+1
④ 令 i = i + 1 i = i + 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值