数学 {集合的基数,基数集,阿列夫数集}

数学 {集合的基数,基数集,阿列夫数集}
@LOC: 2

集合的基数 Cardinality

定义

集合 S S S基数, 表示其元素的个数, 记作 ∣ S ∣ ∈ 基数集 |S| \in 基数集 S基数集;

错误

#基数只是对无穷集的大小的一个角度, 两个集合基数相同 并不能表示 他俩的元素个数是相同的; 比如说 N ⊊ Z \mathbb N \subsetneq\mathbb Z NZ, 这一定是正确的 因为N有的Z也有 而N没有的Z也有, 虽然说 他俩的基数相同#
错误! 在有限集的情况下 确实有 A ⊊ B A \subsetneq B AB 则肯定有 ∣ A ∣ < ∣ B ∣ |A| < |B| A<B, 但在无限集 情况会变;

基数 ∣ S ∣ |S| S 就是反映一个集合的大小 即元素的个数 (不是什么 一种角度) 他就是唯一的标准;
对于无穷集合 判断其基数大小 就是通过双射 而不是判断是否包含, 这一点非常重要 即如果 A ⊂ B ∧ B ⊂ A A \subset B \land B \subset A ABBA 则一定有: 有限集 ∣ A ∣ = ∣ B ∣ |A| = |B| A=B (反之不然 比如A={a,b}; B={1,2});
但是对于无限集 这个规则是错误的!

因此 不要用 ⊂ \subset 去判断 ∣ A ∣ |A| A! 集合的基数 他的定义 不是通过 ⊂ \subset 的 他就是一个独立的性质, 求基数 就通过官方的定义 即 ℵ \aleph ;

阿列夫数集 Aleph number

定义

阿列夫数集 ℵ = { ℵ 0 , ℵ 1 , ℵ 2 , . . . } \aleph=\{ \aleph_0 , \aleph_1 , \aleph_2 , ...\} ={0,1,2,...}, 且具有全序关系: ℵ i < ℵ i + 1 \aleph_i < \aleph_{i+1} i<i+1;

基数为 ℵ 0 \aleph_0 0的集合A    ⟺    \iff 存在 A 与 N A 与 \mathbb N AN之间的双射    ⟺    \iff 集合A可以线性化为一个序列(下标 N \mathbb N N 与元素依然是双射);

基数为 ℵ 1 \aleph_1 1的集合A    ⟺    \iff 存在 A 与 R A 与 \mathbb R AR之间的双射 ;

错误

#基数为 ℵ 0 \aleph_0 0的集合, 如果是全序的 则一定可以写成为一个 单调的序列#
错误! 比如{整数集,有理数集}是全序的 但不能写成像自然数那样[0, 1, 2, ...];
即使你把端点固定住 比如令A集合为[0, 1]之间所有的有理数, 他是全序的 但你依然无法写成为一个单调序列;

性质

MARK: @LOC_1;
# ℵ 0 ℵ 0 = ℵ 0 \aleph_0 ^{\aleph_0} = \aleph_0 00=0#
##等价表述##: 从集合的笛卡尔积的角度看 ∣ N ℵ 0 ∣ = ∣ N ∣ |\mathbb{N}^{\aleph_0}| = |\mathbb{N}| N0=N, 即: 长度为 ℵ 0 \aleph_0 0的序列 [ a 0 , a 1 , . . . ] [a_0, a_1, ...] [a0,a1,...] 每个元素 ∈ N \in \mathbb{N} N, 则: 所有不同的序列个数 有 ℵ 0 \aleph_0 0个;
##等价表述##: ℵ 0 \aleph_0 0个大小为 ℵ 0 \aleph_0 0的集合 A 0 , A 1 , . . . A_0, A_1, ... A0,A1,..., 这些集合的并集 S = A 0 ∪ A 1 ∪ . . . S = A_0 \cup A_1 \cup ... S=A0A1... 满足 ∣ S ∣ = ℵ 0 |S| = \aleph_0 S=0;

#证明#

令B = A0 U A1 U A2 ..., 将所有Ai集合 按照如下摆放

A00 A01 A02 A03 ... (第1个集合)
A10 A11 A12 A13 ... (第2个集合)
A20 A21 A22 A23 ... (第3个集合)
A30 A31 A32 A33 ... (第4个集合)
.
.
.

构造序列: C = [A00, A01 A10, A02 A11 A20, ...], 此时因为每个元素Aij(不关注这个对象的值! 他是唯一性是由 i , j i,j i,j下标所确定的) 他在序列里的下标是固定的;
故我们构造出了: {Aij} 与 N N N 之间的双射, 因此 ∣ A i j ∣ = ℵ 0 | {Aij} | = \aleph_0 Aij=0;
上面是用 i , j i,j i,j 2个下标来唯一性确定元素, 但是对B集合 他的唯一性判断的是 A A A (即A00可能等于A10), 根据LINK: @LOC_0, 因此 ∣ B ∣ = ℵ 0 |B| = \aleph_0 B=0;

@DELI;

#大小为 ℵ 0 \aleph_0 0的集合A 的任意无限子集B的大小 也为 ℵ 0 \aleph_0 0#
MARK: @LOC_0

首先, 因为是子集 所以一定有 ∣ B ∣ ≤ ∣ A ∣ |B| \leq |A| BA, 而又因为 ∣ B ∣ ∉ N |B| \notin \mathbb N B/N, 所有 ≤ ℵ 0 \leq \aleph_0 0的阿列夫数 只有 ℵ 0 \aleph_0 0, 故 ∣ B ∣ = ℵ 0 |B| = \aleph_0 B=0;

基数集 Cardinal number

定义

基数集等于 {自然数集, 阿列夫数集}的并集, 且具有全序关系: ∀ x 1 ∈ N , ∀ x 2 ∈ ℵ , ( x 1 < x 2 ) \forall x_1 \in \mathbb N, \forall x_2 \in \aleph, (x_1 < x_2) x1N,x2,(x1<x2); (自然数集/阿列夫数集, 本身具有全序);

性质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值