集合的基数

1. 集 合 的 基 数 1.集合的基数 1.
∣ A ∣ 将 集 合 中 元 素 的 个 数 推 广 到 无 穷 集 合 称 为 集 合 的 基 数 ( 势 / 浓 度 ) |A|将集合中元素的个数推广到无穷集合称为集合的基数(势/浓度) A广/
2. 两 个 集 合 对 等 ( 等 势 , 等 浓 ) − − − b e r n s t e i n 定 理 ( 康 托 尔 − 伯 恩 斯 坦 − 施 罗 德 定 理 ) : 2.两个集合对等(等势,等浓)---bernstein定理(康托尔-伯恩斯坦-施罗德定理): 2.bernstein():
两 个 集 合 之 间 存 在 一 一 映 射 , 两 个 集 合 基 数 相 同 ∣ A = ∣ B ∣ 两个集合之间存在一一映射,两个集合基数相同|A=|B| ,A=B

3. 容 易 验 证 集 合 的 对 等 关 系 是 一 个 等 价 关 系 3.容易验证集合的对等关系是一个等价关系 3.
我 们 可 以 用 对 等 关 系 重 新 来 刻 画 什 么 是 集 合 的 基 数 : 集 合 按 照 对 等 关 系 分 成 等 价 类 , 每 个 等 价 类 的 共 同 的 数 量 特 征 , 称 为 该 等 价 类 中 集 合 的 基 数 。 我们可以用对等关系重新来刻画什么是集合的基数:\\集合按照对等关系分成等价类,每个等价类的共同的数量特征, 称为该等价类中集合的基数。 :
4. 可 数 ( 可 与 自 然 数 对 应 的 ) 集 合 的 基 数 4.可数(可与自然数对应的)集合的基数 4.()
可 数 有 限 集 合 的 基 数 记 为 元 素 个 数 n , 自 然 数 集 合 ( 可 数 无 限 ) 的 基 数 记 为 ℵ ₀ 阿 列 夫 零 可 数 集 合 的 子 集 / 并 集 仍 是 可 数 集 合 可 数 无 穷 多 个 可 数 集 合 的 并 集 仍 是 可 数 集 合 ( 柯 西 乘 法 那 个 排 列 ) 可数有限集合的基数记为元素个数n,自然数集合(可数无限)的基数记为\color{red} ℵ₀\color{black} 阿列夫零 \\可数集合的子集/并集 仍是可数集合 \\可数无穷多个可数集合的并集仍是可数集合(柯西乘法那个排列) n,/(西)
在这里插入图片描述
可 数 集 合 A , B 的 笛 卡 儿 积 也 是 可 数 集 ( 有 限 个 是 需 要 对 n 进 行 归 纳 证 明 , 可 数 无 穷 多 个 不 可 数 ) 有 理 数 集 是 可 数 集 合 : 任 何 一 个 有 理 数 都 能 写 成 分 数 可数集合A,B的\color{red} 笛卡儿积\color{black} 也是可数集(有限个是需要对n进行归纳证明,可数无穷多个不可数)\\ 有理数集是可数集合:任何一个有理数都能写成分数 A,B(n):
在这里插入图片描述

5. 不 可 数 集 与 康 托 尔 著 名 的 对 角 线 证 明 5.不可数集与康托尔著名的对角线证明 5.线
可 数 集 合 之 外 的 称 为 不 可 数 集 合 , 比 如 实 数 区 间 ( 0 , 1 ) , 实 数 集 的 基 数 记 为 c 0. a 1 , 1 a 1 , 2 a 1 , 3 … ( a i , j 表 示 第 i 个 数 的 第 j 位 ) 思 考 是 否 有 实 数 不 在 以 上 的 范 围 内 数 字 0. f ( a 1 , 1 ) f ( a 2 , 2 ) f ( a 3 , 3 ) f ( a 4 , 4 ) … … , f ( a k , k ) = { 1 a k , k ≠ 1 2 a k , k = 1 可数集合之外的称为不可数集合,比如实数区间(0,1),实数集的基数记为c\\ 0.a_{1,1} a_{1,2} a_{1,3} …(a_{i,j}表示第i个数的第j位)\\ 思考是否有实数不在以上的范围内\\ 数字0.f(a_{1,1})f(a_{2,2})f(a_{3,3})f(a_{4,4})……, f(a_{k,k})=\begin{cases} 1& a_{k,k}\neq 1\\ 2& a_{k,k}= 1 \end{cases} (0,1)c0.a1,1a1,2a1,3(ai,jij)0.f(a1,1)f(a2,2)f(a3,3)f(a4,4),f(ak,k)={12ak,k=1ak,k=1
6. 集 合 A 中 的 元 素 不 能 与 A 的 所 有 子 集 建 立 一 一 映 射 关 系 6.集合A中的元素不能与A的所有子集建立一一映射关系 6.AA
有 限 的 n 个 元 素 显 然 有 2 n 个 元 素 证 明 : 假 设 映 射 关 系 为 f , B = { x ∣ x ∈ A 且 x ∉ f ( x ) } 对 于 A = { 0 , 1 , 2 } 则 B = { } 于 是 存 在 唯 一 的 一 个 元 素 b ∈ A , 使 得 f ( b ) = B , 若 b ∈ B , 由 定 义 知 b ∉ f ( b ) = B , 即 b ∉ B , 矛 盾 若 b ∉ B , 因 为 f ( b ) = B , 所 以 b ∈ B , 矛 盾 有限的n个元素显然有2^n个元素\\ 证明:假设映射关系为f,B=\{x|x\in A且x\notin f(x)\}\\ 对于A=\{0,1,2\}则B=\{\}\\ 于是存在唯一的一个元素b\in A,使得f(b)=B,\\ 若b\in B,由定义知b\notin f(b)= B,即b\notin B,矛盾\\ 若b\notin B,因为f(b)=B,所以b\in B,矛盾\\ n2nf,B={xxAx/f(x)}A={0,1,2}B={}bA,使f(b)=BbB,b/f(b)=Bb/B,b/B,f(b)=B,bB,


连 续 统 问 题 连续统问题
有 基 数 的 大 小 排 列 : 0 , 1 , 2 , … , n , … ℵ ₀ , ℵ 1 , ℵ 2 , … , 那 么 c 处 在 什 么 位 置 ? 现 在 已 经 证 明 : 证 明 连 续 统 假 设 成 立 是 不 肯 能 的 , 证 明 连 续 统 假 设 不 成 立 也 是 不 可 能 的 有基数的大小排列:0,1,2,…,n,…ℵ₀,ℵ_1,ℵ_2,…,那么c处在什么位置?\\ 现在已经证明:证明连续统假设成立是不肯能的,证明连续统假设不成立也是不可能的 012n,1,2,c


拓展链接:
贝特朗悖论:

2020-12-07晚
贝特朗悖论

【在0到1之间按照均匀分布独立同分布地取两个实数x,y,发现y=x^2,那么x>1/2的概率是多少?】David KZ:… https://www.zhihu.com/question/435425890/answer/1639427885?utm_source=qq&utm_medium=social (分享自知乎网)

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值