该论文最新版本由阿里研究机构发表于2021年7月,截止现在2024年10月,引用数是167次。
文章目录
论文核心贡献(省流版阅读这里即可)
论文描述了一种新的损失函数——不对称损失(Asymmetric Loss,简称 ASL),它被设计用于应对多标签分类任务中的正负样本不平衡问题。
1. 多标签分类中的挑战
- 正负样本不平衡:在典型的多标签分类设置中,一张图片通常包含少量的正标签(positive labels)和大量的负标签(negative labels)。这种不平衡现象会影响优化过程。
- 梯度忽视:由于负标签的数量远多于正标签,优化过程中可能会忽视来自正标签的梯度,导致训练效果不佳。
2. 不对称损失(ASL)的介绍
- 目标:为了解决上述问题,引入了一种新的损失函数 ASL,该损失函数在处理正样本和负样本时有不同的策略。
- 策略:ASL 动态地降低简单负样本的权重,并对这些样本进行硬阈值处理(hard-thresholding),同时丢弃可能被错误标记的样本。
3. ASL 的工作原理
- 平衡概率:通过动态调整不同样本的概率,ASL 能够平衡不同样本的重要性。
- 性能提升:这种平衡机制最终转化为更高的平均精度(mAP,mean Average Precision)分数。