《ASL》论文精读:用ASL损失改善多标签分类的样本不平衡

在这里插入图片描述

  1. Asymmetric Loss For Multi-Label Classification论文地址
  2. Paperwithcode的多标签分类排名
  3. GIthub仓库-728个star

该论文最新版本由阿里研究机构发表于2021年7月,截止现在2024年10月,引用数是167次。

论文核心贡献(省流版阅读这里即可)

论文描述了一种新的损失函数——不对称损失(Asymmetric Loss,简称 ASL),它被设计用于应对多标签分类任务中的正负样本不平衡问题。

1. 多标签分类中的挑战

  • 正负样本不平衡:在典型的多标签分类设置中,一张图片通常包含少量的正标签(positive labels)和大量的负标签(negative labels)。这种不平衡现象会影响优化过程。
  • 梯度忽视:由于负标签的数量远多于正标签,优化过程中可能会忽视来自正标签的梯度,导致训练效果不佳。

2. 不对称损失(ASL)的介绍

  • 目标:为了解决上述问题,引入了一种新的损失函数 ASL,该损失函数在处理正样本和负样本时有不同的策略。
  • 策略:ASL 动态地降低简单负样本的权重,并对这些样本进行硬阈值处理(hard-thresholding),同时丢弃可能被错误标记的样本。

3. ASL 的工作原理

  • 平衡概率:通过动态调整不同样本的概率,ASL 能够平衡不同样本的重要性。
  • 性能提升:这种平衡机制最终转化为更高的平均精度(mAP,mean Average Precision)分数。

4. 实验结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值