论文:Asymmetric Loss For Multi-Label Classification
GitHub:https://github.com/Alibaba-MIIL/ASL
https://github.com/Alibaba-MIIL/TResNet
阿里巴巴
论文基于focal loss解决正负样本不平衡问题,提出了focal loss的改进版,一种非对称的loss,即Asymmetric Loss。
主要贡献:
- 设计了一个新颖的loss,解决了多标签分类任务中,正负样本不平衡问题,标签错误问题。
- 通过梯度分析,对该loss进行了分析。
- 提出了自适应的方法来控制非对称的级别,简化了超参数选择过程。
- 使用ASL loss,在主流的数据集上取得了 state-of-the-art的效果。其中, MS-COCO 达到86.6%map,超过之前最好的结果2.8%。
- 该方法,高效,容易使用。相比于最近的其他方法,该方法基于主流的网络结构,并且不需要其他的信息。
非对称loss-ASL:
Binary Cross-Entropy:
focal loss:
Asymmetric Loss:
为了方便,可以设置 γ+ = 0,这样L+就是正常的交叉熵损失。而L-可以通过阈值m减少容易负样本的loss贡献。其中, γ− > γ+。
最终,ASL loss不仅具备focal loss进行正负样本平衡的作用,还具备减少容易负样本loss贡献的效果。
网络结构:
网络结构这里采用了TResNet,也是阿里内部发明的网络结构。在相同推理速度,训练速度的条件下,具有比EfficientNet更高的精度。
TResNet系列一共有三种型号:TResNet-M,TResNet-L和TResNet-XL,它们的区别仅在深度和通道数量不同。
实验结果:
总结:
- ASL loss,一种基于focal loss改进的非对称loss,不仅具备focal loss进行正负样本平衡的作用,还具备减少容易负样本loss贡献的效果。
- 本文验证ASL loss的落脚点是多标签分类,但是,ASL loss不仅可以应用于多标签分类,还可以应用于单标签分类任务,物体检测任务。对缓解长尾(long-tail)数据分布具有很好的效果。