Hexagon 680 常用知识

0. 功能简介 支持异构计算 提升处理能力:每个时钟周期同时处理高达 1024位数据HVX宽度——可同时处理的数据位数——每个时钟周期应用可执行更多工作。标准移动CPU为32位指令宽度,其计算协处理器扩展4倍,达到128位宽度。基本Hexagon处理器为64位指令宽度,是移动CPU正常宽度的两倍,...

2016-12-22 18:30:48

阅读数:6827

评论数:3

Ubuntu常用命令

在创建用户时,需要为新建用户指定一用户组,如果不指定其用户所属的工作组,自动会生成一个与用户名同名的工作组。创建用户user1的时候指定其所属工作组users,例:useradd –g users user1一、创建用户:1、使用命令 useradd例:useradd user1——创建用户use...

2016-12-22 15:27:11

阅读数:4351

评论数:0

矩阵分解 (特征值/奇异值分解+SVD+解齐次/非齐次线性方程组)

,#1. 用途#1.1 应用领域 最优化问题:最小二乘问题 (求取最小二乘解的方法一般使用SVD) 统计分析:信号与图像处理 求解线性方程组:Ax=0或Ax=bAx = 0 或 Ax =b 奇异值分解:可以降维,同时可以降低数据存储需求 1.2 矩阵是什么 矩阵是什么取决于应用场景 矩阵可以是...

2016-12-21 10:04:56

阅读数:9763

评论数:2

2D平面变换总结

1. 总览 2. 平移变换 (Translation)3. 尺度变换 (Scale)4. 旋转变换(Rotation)5. 欧几里德/刚体变换 (Euclidean/Rigid) 6. 相似性/按比例欧氏 (Similarity/Scaled Euclidean)7. 仿射变换(Affin...

2016-12-17 16:38:45

阅读数:5109

评论数:0

SLAM基础知识总结

1. 视差与深度信息 根据双目成像原理,两幅图像摄像机光心位置不同,而且可以看到场景中同一个场景点,则根据此场景点在两幅图像中的#F00图像坐标(Film Coords/Image Plane)之差(Disparity/Parallax)及两摄像机光心之间的距离(Baseline)算出场景点的深度...

2016-12-17 10:05:50

阅读数:6721

评论数:1

正交矩阵及其应用-思维导图

2016-12-13 11:11:59

阅读数:4911

评论数:0

线性代数基本知识-思维导图

1. 框架 2. 运算及性质

2016-12-13 09:41:26

阅读数:9453

评论数:0

斯坦福大学CS224d基础1:线性代数知识

转自:http://blog.csdn.net/longxinchen_ml/article/details/51629328 1基本概念和符号 线性代数可以对一组线性方程进行简洁地表示和运算。例如,对于这个方程组: 这里有两个方程和两个变量,如果你学过高中代数的话,你肯定知道,...

2016-12-10 22:07:07

阅读数:4957

评论数:0

矩阵特征值、特征向量、奇异值

1. 特征值与奇异值的主要区别 两者的主要区别在于:奇异值分解主要用于数据矩阵,而特征植分解主要用于方型的相关矩阵。自相关矩阵正定时, 特征值分解是奇异值分解的特例,且实现时相对简单些。 2. 定义 一矩阵A作用与一向量a,结果只相当与该向量乘以一常数λ。即A*a=λa,则a为该矩阵A的特征向...

2016-12-05 09:52:53

阅读数:943

评论数:0

对称和反对称矩阵(Symmetric and skew-symmetric matrices)

1. 定义     对称阵和反对称阵均:必为方阵     1)对称阵:     2)反对称阵: 2. 特性 3. 应用 3.1 特征值分解(Eigenvalue Decomposition)     1)对称矩阵分解: 如果A是实对称矩阵,则A可被分解为:,U是一个正交矩阵,D是一个实...

2016-12-03 18:07:25

阅读数:2903

评论数:0

正交矩阵(Orthogonal Matrix)

1. 定义     正交矩阵: Orthogonal Matrix      &space;A^{-1}=A^{T}" target="_blank">&space;A^{-1}=A^{T}" title="A^T A=AA^...

2016-12-03 16:36:59

阅读数:3704

评论数:0

单应矩阵 基本矩阵 本质矩阵的区别与联系

1. 对极几何 两个相机在不同位置(实际要求光心位置不同即可)拍摄两张图,这个模型就是对极几何,如下图(摘自《计算机视觉中的多视图几何》): 两摄像机光心分别是C和C',图像平面是两白色的平面,空间中某一个点X在两张图的投影点分别是x和x'。这样的模型就是对极几何,空间点和两光心组成的平面叫...

2016-12-02 14:47:38

阅读数:6599

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭