机器学习中叠加集合的本质

堆叠泛化(Stacked Generalization)是一种机器学习集成方法,由于训练过程复杂,常由专家在高风险场景中使用。现代框架使得实施和评估变得容易,使得这种技术适用于定制预测建模项目。堆叠技术家族提供了更广泛的视角,有助于理解和优化模型配置。本文适合关注、点赞、评论和私信交流学习,分享机器学习的深入理解。
摘要由CSDN通过智能技术生成

机器学习中叠加集合

你好!叠加泛化(Stacked generalization,或stacking)可能是一种不太流行的机器学习集成,因为它描述的是一个框架而不是一个特定的模型。

也许它在主流机器学习中不那么流行的原因是,要正确地训练一个堆栈模型,而不遭受数据泄漏是很困难的。这意味着这项技术主要被高技能专家在高风险环境中使用,例如机器学习比赛,并被命名为混合集成。

然而,现代机器学习框架使得分类和回归预测建模问题的实现和评估成为一种常规。因此,我们可以通过堆叠框架的视角来回顾与堆叠相关的集成学习方法。在探索我们自己的预测建模项目时,这个更广泛的堆叠技术家族还可以帮助我们了解如何在将来定制技术的配置。
关注、点赞、收藏、评论、私信交流分享学习,文章仅学习研究,希望有您的理解和支持!如果有您的关注、点赞、评论和私信学习,我们下期将出更多知识干货!赶紧关注、点赞吧~
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全球学习中心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值