机器学习中叠加集合
你好!叠加泛化(Stacked generalization,或stacking)可能是一种不太流行的机器学习集成,因为它描述的是一个框架而不是一个特定的模型。
也许它在主流机器学习中不那么流行的原因是,要正确地训练一个堆栈模型,而不遭受数据泄漏是很困难的。这意味着这项技术主要被高技能专家在高风险环境中使用,例如机器学习比赛,并被命名为混合集成。
然而,现代机器学习框架使得分类和回归预测建模问题的实现和评估成为一种常规。因此,我们可以通过堆叠框架的视角来回顾与堆叠相关的集成学习方法。在探索我们自己的预测建模项目时,这个更广泛的堆叠技术家族还可以帮助我们了解如何在将来定制技术的配置。
关注、点赞、收藏、评论、私信交流分享学习,文章仅学习研究,希望有您的理解和支持!如果有您的关注、点赞、评论和私信学习,我们下期将出更多知识干货!赶紧关注、点赞吧~