1.第十七章:下面来看子群的理解:课本定义:
从前的时候总觉得这个定理怪怪的,书读百遍其义自见。因为每遇到这里总问自己在H是G的子集的前提下,为什么只需证明H中的a,b作用后的ab依然在H中及群H中成员a的逆如果在H中的话就可以说明H是G的子群 ?
答:请看概念
H的字母表是G字母表中的子集,
H的运算和G的运算是无差别的(若G中运算为o,则H的运算亦为o),
那么新构成的群H中元素在运算o的作用下应该是封闭在H内的,而非映射到G-H中,只有这样代数系统H才能被称之为群,又由于H为G的子集,那么我们可以说H是G子群。
-------------------------------------------------------------
2.在第十六章:
课本给出生成子半群定义:
对比下面概念综合理解记忆:
从前总会问:主谓宾定状补怎么理解拆分的定义,原定义读起来拗口晦涩,不知所云,是说交集是<B>,还是在讲S的所有子集,还是么呢?
答:仔细看定义:
定义可以分解为:B是S的非空子集,由B生成的子半群(即<B>)也是S的子集。同时,由B生成的子半群(即<B>)必须具有一个一致的性质,这个性质就是,S中所有子集的交含有B,那具有这个性质的这些子集即为由B生成的子半群(即<B>),显然有成立。
还有:怎么理解定理16.4呢?问题如下:
问:既然定义中说<B>是交集,那为什么还是集合B^n的初级并呢?
答:我们来看,由于B是S的子集,且由<B>的定义知,<B>是S的子半群,那么也就满足代数系统V=<S,*>所具有的性质特征,也就是说<B>关于运算*的结果必封闭在<B>中,若令,则必有成立。
-----------------------------------------------------------------------------------------------------------------------
下面来比较一下生成子群的定义:
及------------------------------------------------>
-----------------------------------------------------------
3.接下来呢,比较一下变换和一一变换,及一一变换群和变换群,还有置换与n元置换及n元置换群和n元对称群的关系:
首先,比较一下变换和一一变换:
另,我们还需要知道变换的这个知识点:
这里的合成是指函数的合成。
--------------------------------------------------------
其次,比较一下一一变换群和变换群的关系:
总结:变换群是一一变换群E(A)的子群。
一一变换群:字母表A上的全体一一变换构成的集合。
变换群:一一变换群的子群。
--------------------------------------------------------
最后比较一下置换与n元置换及n元置换群和n元对称群:
置换:
n元置换:换。
其中:
eg.S3:
S3的运算表如下:(S3是3元对称群,定义见下图后面文字部分)
n元对称群:由。(如上图S3)
n元置换群:
(的一个群)
----------------------------------------------------------------------------
另:再来比较一下轮换和对换的定义:
轮换的用法,可以从对定理的证明理解来入手,如下:
-----------------------------------------------------
4.下面来看交代群的定义:
那么什么是偶置换呢,定义如下:
为什么这么分类呢,解释如下:
根据是什么呢,如下:
关于逆序数的问题这里不再累述,相关分析请见本人博客:http://blog.csdn.net/mygodhome/archive/2010/09/23/5902400.aspx
下面来看交代群定义的证明和实例:
---------------------------------------------------
以上仅鄙人拙见。 更新ing……