关于抽象代数(16、17)中一些零散概念间联系的个人分析总结

1.第十七章:下面来看子群的理解:课本定义:

 

从前的时候总觉得这个定理怪怪的,书读百遍其义自见。因为每遇到这里总问自己在H是G的子集的前提下,为什么只需证明H中的a,b作用后的ab依然在H中及群H中成员a的逆如果在H中的话就可以说明H是G的子群 ?

答:请看概念

H的字母表是G字母表中的子集,

H的运算和G的运算是无差别的(若G中运算为o,则H的运算亦为o),

那么新构成的群H中元素在运算o的作用下应该是封闭在H内的,而非映射到G-H中,只有这样代数系统H才能被称之为群,又由于H为G的子集,那么我们可以说H是G子群。

-------------------------------------------------------------

 

2.在第十六章:

课本给出生成子半群定义:

对比下面概念综合理解记忆:

从前总会问:主谓宾定状补怎么理解拆分的定义,原定义读起来拗口晦涩,不知所云,是说交集是<B>,还是在讲S的所有子集,还是么呢?

答:仔细看定义:

定义可以分解为:B是S的非空子集,由B生成的子半群(即<B>)也是S的子集。同时,由B生成的子半群(即<B>)必须具有一个一致的性质,这个性质就是,S中所有子集的交含有B,那具有这个性质的这些子集即为由B生成的子半群(即<B>),显然有成立。

还有:怎么理解定理16.4呢?问题如下:

问:既然定义中说<B>是交集,那为什么还是集合B^n的初级并呢?

答:我们来看,由于B是S的子集,且由<B>的定义知,<B>是S的子半群,那么也就满足代数系统V=<S,*>所具有的性质特征,也就是说<B>关于运算*的结果必封闭在<B>中,若令,则必有成立。

 

-----------------------------------------------------------------------------------------------------------------------

下面来比较一下生成子群的定义:

 

及------------------------------------------------>

-----------------------------------------------------------

3.接下来呢,比较一下变换和一一变换,及一一变换群和变换群,还有置换n元置换n元置换群和n元对称群的关系

首先,比较一下变换和一一变换:                                          

另,我们还需要知道变换的这个知识点:

这里的合成是指函数的合成。

--------------------------------------------------------

其次,比较一下一一变换群和变换群的关系:                           

总结:变换群一一变换群E(A)的子群。

一一变换群:字母表A上的全体一一变换构成的集合。

      变换群:一一变换群的子群。

--------------------------------------------------------

最后比较一下置换与n元置换及n元置换群和n元对称群:            

      置换

 n元置换换。

其中:

eg.S3:

S3的运算表如下:(S33元对称群,定义见下图后面文字部分)

n元对称群。(如上图S3)

n元置换群

的一个群)

----------------------------------------------------------------------------

另:再来比较一下轮换和对换的定义:

轮换的用法,可以从对定理的证明理解来入手,如下:

-----------------------------------------------------

 

4.下面来看交代群的定义:

 

   那么什么是偶置换呢,定义如下:

   为什么这么分类呢,解释如下:

    根据是什么呢,如下:

关于逆序数的问题这里不再累述,相关分析请见本人博客:http://blog.csdn.net/mygodhome/archive/2010/09/23/5902400.aspx

下面来看交代群定义的证明和实例:

---------------------------------------------------

以上仅鄙人拙见。 更新ing……

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值