前文用旋转讲述了等边三角形的旋转,由此引入了循环群。在很多教材中讲群论是研究对称的学科,群是作用的集合。那好,旋转的本质是中心对称,但是对称还有轴对称啊。再以三角形为例子,研究三角形的所有对称。
首先是中心对称,也就是两种旋转:旋转
2
π
3
\frac{2\pi}3
32π和旋转
4
π
3
\frac{4\pi}3
34π,也就是120°和240°旋转,分别用了
r
r
r和
r
2
r^2
r2来表示。如下图:
那轴对称呢?我们用学过的等边三角形几何知识知道等边三角形有三条对称轴。假设等边三角形的三个顶点分别为1、2、3,那就以s1命名穿过顶点1的对称轴,于是有以下对称运算(其实就是翻转,啊哈哈哈):
所以,对于等边三角形,我们有六种对称运算,分别是e、r、r2、s1、s2、s3。一个正多边形的所有旋转和所有轴对称组成的群,就是symmetry group。不是我装逼要用英文哈,而是真的不能翻译为对称群。这个群里不是对称群symmetric group。因为对称群symmetric group代表了n个元素的所有置换(也就是排列)。英文symmetric是形容词,symmetry是名词,但是中文都翻译为对称,所以要仔细区分清楚。这么复杂,我画个表吧,帮助大家理解,置换如果不了解,可以看我写在数学算法里的文章:
对称运算 | 状态图 | 对应置换 |
---|---|---|
e e e | ![]() | e |
r r r | ![]() | ( 1 3 2 ) (1 \ 3 \ 2) (1 3 2) |
r 2 r^2 r2 | ![]() | ( 1 2 3 ) (1 \ 2 \ 3) (1 2 3) |
s 1 s_1 s1 | ![]() | ( 2 3 ) (2 \ 3) (2 3) |
s 2 s_2 s2 | ![]() | ( 1 3 ) (1 \ 3) (1 3) |
s 3 s_3 s3 | ![]() | ( 1 2 ) (1\ 2) (1 2) |
对应的乘法表,如下:
⋅
e
r
r
2
s
1
s
2
s
3
e
e
r
r
2
s
1
s
2
s
3
r
r
r
2
e
s
3
s
1
s
2
r
2
r
2
e
r
s
2
s
3
s
1
s
1
s
1
s
2
s
3
e
r
r
2
s
2
s
2
s
3
s
1
r
2
e
r
s
3
s
3
s
1
s
2
r
r
2
e
\begin {array}{c|c} \cdot & e & r & r^2 & s_1 & s_2 & s_3 \\ \hline e & e & r & r^2 & s_1 & s_2 & s_3 \\ r & r & r^2 & e & s_3 & s_1 & s_2\\ r^2 & r^2 & e & r & s_2 & s_3 & s_1\\ s_1 & s_1 & s_2 & s_3 & e & r & r^2\\ s_2 & s_2 & s_3 & s_1 & r^2 & e & r\\ s_3 & s_3 & s_1 & s_2 & r & r^2 & e \end {array}
⋅err2s1s2s3eerr2s1s2s3rrr2es2s3s1r2r2ers3s1s2s1s1s3s2er2rs2s2s1s3rer2s3s3s2s1r2re
注意表中的第一列是第一个运算元素,第一行是第二个运算元素。所以有:
s
1
⋅
s
2
=
(
2
3
)
⋅
(
1
3
)
=
(
1
3
2
)
=
r
s_1\cdot s_2 = (2 \ 3)\cdot(1 \ 3) = (1 \ 3 \ 2) = r
s1⋅s2=(2 3)⋅(1 3)=(1 3 2)=r
对称群symmetric group的符号是S,所以我们只能换个符号了。就把这个等边三角形的对称群symmetry group叫
H
3
H_3
H3吧。其实对于正三角形来说,两个概念实际上是同一个群。但是对于正方形就不一样了。正四边形,也就是正方形,有算上0°有4种旋转和4种轴对称,所以
H
4
H_4
H4有8个元素。但四元素的对称群有
4
!
=
24
4!=24
4!=24个元素。Symmetry group同构于symmetric group的子群。我们还没有接触同构、子群的概念,但是可以看到对称操作,本质上就是元素位置的互换。同时,我们也可以观察到正多边形奇数点和偶数点是不一样的,偶数点的比如正方形可以按对角线轴对称,也可以按中线轴对称,但是奇数点的,中线就穿过了端点。因篇幅有限,正方形和其他多边形我就不分析了。