(2010)关于DM部分的图论题

昨晚和秦淮说到一道让他老人家纠结了近半年的离散数学真题。由于昨晚笔者发烧感冒,脑子有些反应滞后,忙到凌晨,身体实在吃不消就没有整理,今天给出个整理中的结论吧(个人分析,仅供参考):

来看题:

6.有向图G=<{1,2,,3,…,n},{<i,j>|当i,j 同奇偶时且i>j}或{<i,j>|当i,j 不同奇偶时且i<j}>问:
(1)G 是竞赛图吗?为什么?
(2)G 是欧拉图吗?为什么?
(3)G 是哈密顿图吗?为什么?
(4)G 是强连通图吗?为什么?
(5)G 是可平面图吗?为什么?

答:(1)是竞赛图。因为i和j可以取遍{1,2,……n},又根据题意知道每条边位单向边,且每两个顶点都有边。根据竞赛图的定义知G是竞赛图

下面来看相关知识点的分析:

                     (a)               (b)               (c)

 

             无向完全图===>有向完全图===>4阶竞赛图(单边单向)

                            每两个顶点间                         去掉两个顶点

                                                    建立2个反向的边                      间一个方向的边

----------------------------------------------------------------------------------------------------------

 6.有向图G=<{1,2,,3,…,n},{<i,j>|当i,j 同奇偶时且i>j}或{<i,j>|当i,j 不同奇偶时且i<j}>问:

  (2)G 是欧拉图吗?为什么?

答:需要分情况讨论(n为偶数时,G不是欧拉图;n为奇数时,G为欧拉图):

      一.当n为偶数时:

          任取一顶点v,则根据题意,有度:, v的出度, 入度,根据有向连通图是否欧拉图的判定定理知,若有向图G为欧拉图则对任意顶点v有, 矛盾,则G在n为偶数时不时欧拉图。

-------------------->这里的入度出度是这么归纳出来的:如下:

 对任意vi取G中偶数,则,

   <i,j>,i<j:使vi与G中所有vj(j取遍G中所有奇数,且j不等于i), 

 

这是因为偶偶顶点在G中是间隔出现的,偶顶点在G中有n/2个,vi要与其他(n/2)-1个偶顶点相连。

,

这是因为vi的出度为:|{小于i的所有偶数}|-1=(i/2)-1.

,

这是因为 vi的入度为:vi的度-vi的出度.

=============>

<i,j>,i>j:使vi与G中所有vj(j取遍G中所有奇数,且j不等于i),

 ,

这是因为G中有n/2个奇顶点,任一vi与所有奇顶点相连。

这是因为 vi的出度为:|{小于i的所有奇数}|=i/2

这是因为 vi的入度为:vi的度-vi的出度.则此时有:

~~~~~~>同理也可归纳对任意vi,i取G中奇数的情况(结果是一样的)

奇:

                                                   

        

         

 偶:

        

           

      

则此时有:

    

那么也就是在G中有:

即:

.即知有向图G不是欧拉图得证。

二,n为奇数时,类似可以讨论:

可以得到:

所以当n为奇数时,有向图G为欧拉图,得证。

---------------------------------------------------------------

 6.有向图G=<{1,2,,3,…,n},{<i,j>|当i,j 同奇偶时且i>j}或{<i,j>|当i,j 不同奇偶时且i<j}>问:

(3)G 是哈密顿图吗?为什么?

答:是哈密顿图。因为G为n阶竞赛图,则G中存在哈密顿通路(定理8.9),且有i,j取遍G中所以顶点,且每个顶点都是相连且有通路的.

----------------------------------------------------------------
  6.有向图G=<{1,2,,3,…,n},{<i,j>|当i,j 同奇偶时且i>j}或{<i,j>|当i,j 不同奇偶时且i<j}>问:

 (4)G 是强连通图吗?为什么?
答:是。因为有向图G是哈密顿图,必满足到所有顶点可达。(有定理8.10:强连通竞赛图式哈密顿图)

------------------------------------------------------------------

(5)G 是可平面图吗?为什么?

答:n>4时,不可平面化。因为根据定理11.10:当G为n(n=3或n>3)阶m条边的简单平面图,则m<=3n-6.此题中m=n(n-1)/2,那么建立不等式可解得,n=3,4.当n=1,2时也成立。所以所当n>5时不是可平面图。

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值