情感分析及数据集
随着在线社交媒体和评论平台的快速发展,大量评论的数据被记录下来。这些数据具有支持决策过程的巨大潜力。情感分析(sentiment analysis)研究人民在文本中(如产品评论、博客评论和论坛讨论等)“隐藏”的情绪。它在广泛应用于政治(如公众对政策的情绪分析)、金融(如市场情绪分析)和营销(如产品研究和品牌管理)等领域。
由于情感可以被分类为离散的极性或尺度(例如,积极的和消极的),我们可以将情感分析看作一项文本分类任务,它将可变长度的文本序列转换为固定长度的文本类别。在本章中,我们将实验斯坦福大学的大型电影评论数据集进行情感分析。它由一个训练集和一个测试集组成,其中包含从IMDb下载的25000个电影评论。在这两个数据集中,“积极”和“消极”标签的数量相同,表示不同情感积极性
import os
import torch
from torch import nn
from d2l import torch as d2l
1 - 读取数据集
首先,下载并提取路径…/data/aclImdb中的IMDb评论数据集
d2l.DATA_HUB['aclImdb'] = (
'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz',
'01ada507287d82875905620988597833ad4e0903')
data_dir = d2l.download_extract('aclImdb', 'aclImdb')
Downloading ..\data\aclImdb_v1.tar.gz from http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz...
接下来,读取训练和测试数据集。每个样本都是一个评论及其标签:1表示“积极”,0表示“消极”
def read_imdb(data_dir,is_train):
"""读取IMDb评论数据集文本序列和标签"""
data,labels = [],[]
for label in ('pos','neg'):
folder_name = os.path.join(data_dir,'train' if is_train else 'test',label)
for file in os.listdir(folder_name):
with open(os.path.join(folder_name,file),'rb') as f:
review = f.read().decode('utf-8').replace('\n','')
data.append(review)
labels.append(1 if label == 'pos' else 0)
return data,labels
train_data = read_imdb(data_dir,is_train=True)
print('训练集数目:',len(train_data[0]))
for x,y in zip(train_data[0][:3],train_data[1][:3]):
print('标签',y,'review',x[0:60])
训练集数目: 25000
标签 1 review Bromwell High is a cartoon comedy. It ran at the same time a
标签 1 review Homelessness (or Houselessness as George Carlin stated) has
标签 1 review Brilliant over-acting by Lesley Ann Warren. Best dramatic ho
2 - 预处理数据集
将每个单词作为一个词元,过滤掉出现不到5次的单词,我们从训练数据集中创建一个词表
train_tokens = d2l.tokenize(train_data[0],token='word')
vocab = d2l.Vocab(train_tokens,min_freq=5,reserved_tokens=['<pad>'])
在词元化之后,让我们绘制评论词元长度的直方图
d2l.set_figsize()
d2l.plt.xlabel('# tokens per review')
d2l.plt.ylabel('count')
d2l.plt.hist([len(line) for line in train_tokens],bins=range(0,1000,50));
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-s4rmP2Lz-1665320270912)(https://yingziimage.oss-cn-beijing.aliyuncs.com/img/202210092055138.svg)]
正如我们所料,评论的长度各布不相同,为了每次处理小批量这样的评论,我们通过截断和填充将每个评论的长度设置为500
num_steps = 500 # 序列长度
train_features = torch.tensor([d2l.truncate_pad(
vocab[line],num_steps,vocab['<pad>']) for line in train_tokens])
print(train_features.shape)
torch.Size([25000, 500])
3 - 创建数据迭代器
现在我们可以创建数据迭代器了,在每次迭代中,都会返回一小批量样本
train_iter = d2l.load_array((train_features,torch.tensor(train_data[1])),64)
for X,y in train_iter:
print('X:',X.shape,',y:',y.shape)
break
print('小批量数目:',len(train_iter))
X: torch.Size([64, 500]) ,y: torch.Size([64])
小批量数目: 391
4 - 整合代码
最后,我们将上述步骤封装到load_data_imdb函数中。它返回训练和测试数据迭代器以及IMDb评论数据集的词表
def load_data_imdb(batch_size,num_steps=500):
"""返回数据迭代器和IMDb评论数据集的词表"""
data_dir = d2l.download_extract('aclImdb','aclImdb')
train_data = read_imdb(data_dir,True)
test_data = read_imdb(data_dir,False)
train_tokens = d2l.tokenize(train_data[0],token='word')
test_tokens = d2l.tokenize(test_data[0],token='word')
vocab = d2l.Vocab(train_tokens,min_freq=5)
train_features = torch.tensor([d2l.truncate_pad(vocab[line],num_steps,vocab['<pad>']) for line in train_tokens])
test_features = torch.tensor([d2l.truncate_pad(vocab[line],num_steps,vocab['<pad>']) for line in test_tokens])
train_iter = d2l.load_array((train_features,torch.tensor(train_data[1])),batch_size)
test_iter = d2l.load_array((test_features, torch.tensor(test_data[1])),batch_size,is_train=False)
return train_iter,test_iter,vocab
5 - 小结
- 情感分析研究人们在文本中的情感,这被认为是一个文本分类问题,它将可变长度的文本序列进行转换为固定长度的文本类别
- 经过预处理后,我们可以使用词表将IMDb评论数据集加载到数据迭代器中