week1 cv基础知识

这篇博客深入探讨了RGB图像的基础知识,包括每个像素由红绿蓝三个数值组成,以及这些数值通常在0到255之间。文章详细阐述了点操作、卷积和互相关在图像处理中的应用。高斯滤波器作为线性滤波器的一种,被用于去除图像的高频成分,实现平滑效果。此外,博客还解释了卷积与互相关的区别,以及在特定情况下两者如何等价。通过具体的例子展示了卷积和互相关操作的顺序差异及其对图像的影响。
摘要由CSDN通过智能技术生成

RGB表示

  • Each RGB color image has 3 numbers (R,G,B) per pixel
  • Usually, R, G & B values are in [0, 255]
  • Represented as an m × n × 3 matrix

在这里插入图片描述

An RGB image can be considered as a vector-valued function

f ( x , y ) = [ r ( x , y ) g ( x , y ) b ( x , y ) ] f(x, y)=[r(x, y) g(x, y) b(x, y)] f(x,y)=[r(x,y)g(x,y)b(x,y)]

点操作 Point operations

g ( x , y ) = a f ( x , y ) + b g(x, y)=a f(x, y)+b g(x,y)=af(x,y)+b

a控制对比度,b控制亮度

Cross-correlation

在这里插入图片描述

filtering

box filter

作用

  • Replaces each pixel with an average of its neighborhood
  • Achieve smoothing effect (remove sharp features)

在这里插入图片描述

linear filters

在这里插入图片描述

Gaussian filter

G σ = 1 2 π σ 2 e − ( x 2 + y 2 ) 2 σ 2 G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}} Gσ=2πσ21e2σ2(x2+y2)

在这里插入图片描述

特性

Gaussian is a low-pass filter: it removes high-frequency components from the image

b.与自身的卷积是另一种高斯

c.使用小型-𝜎 kernel,repeat,并获得与较大-𝜎 内核相同的结果

d.使用高斯核与标准偏差𝜎进行两次卷积与使用img对内核进行一次卷积的结果相同相同

e.高斯核是可分离的:它将因子分解为两个一维的乘积高斯

Separable filters

  • 执行卷积的过程需要 𝐾 2 𝐾^2 K2操作(乘加)每像素,其中K是卷积核width or height;

  • 在许多情况下,此操作可以通执行一维水平卷积,然后执行一维垂直卷积,加速计算,只需要2𝐾 操作每像素。

  • 一个卷积核可以分离(成两个)

  • 卷积核可以分离成横向卷积h和纵向卷积v, 也就是 K = v h T K=v h^{T} K=vhT

    比如高斯滤波器就可以分离成横向和纵向:

    G σ ( x , y ) = 1 2 π σ 2 exp ⁡ − x 2 + y 2 2 σ 2 = ( 1 2 π σ exp ⁡ − x 2 2 σ 2 ) ( 1 2 π σ exp ⁡ − y 2 2 σ 2 ) \begin{aligned} G_{\sigma}(x, y) &=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}} \\ &=\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp -\frac{x^{2}}{2 \sigma^{2}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp -\frac{y^{2}}{2 \sigma^{2}}\right) \end{aligned} Gσ(x,y)=2πσ21exp2σ2x2+y2=(2π σ1exp2σ2x2)(2π σ1exp2σ2y2)

具体例子:

在这里插入图片描述

Convolution(卷积)与Cross-correlation(互关性)的区别

  1. 计算顺序的区别:

img

(1)cross-correlation的计算顺序是从左到右,从上到下:

我们对图像中的蓝色区域进行Cross-correlation,那么在点E,也就是 (下标从0开始)

img

(2)convolution的计算顺序是从右到左,从下到上:那么在点E,也就是 (下标从0开始)

img

那么这就相当于将对H(x)‘filter翻转’了:

img

上下翻转一次、左右翻转一次 ,然后进行cross-correlation运算,即:

G [ 3 , 3 ] = i ∗ A + h ∗ B + g ∗ C + f ∗ D + e ∗ E + d ∗ F + c ∗ G + b ∗ H + a ∗ I G[3,3]=i * A+h * B+g * C+f * D+e * E+d * F+c * G+b * H+a * I G[3,3]=iA+hB+gC+fD+eE+dF+cG+bH+aI

2.运用在图片上结果的区别

(1)考虑,一张图如下,我们进行cross-correlation,得到的结果如下:

img

如果换成真实点的图:

img

我们看到得到的结果就像filter,只不过翻转了下(上下翻转一次、左右翻转一次),相当于实现一次卷积。

(2)现在我们考虑convolution,它相当于将filter翻转了一次再进行cross-correlation,那再加上上面的这次翻转就是两次反转,图片与原来相同。

于是convolution就有了下面的性质Identity:E=[…0,0,1,0,0…],F*E=F。

img

3.什么时候convolution和cross-correlation是一样

当filter关于x轴和y轴对称时,通常的Average filter和Gaussian filter都是,两者相同。

4Convolution(卷积)与Cross-correlation(互关性)计算题的例子:

img
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值