多视图学习
前言
多视图学习的定义和应用
一、多视图学习?
多视图学习本质上是一类使用多视图数据集来进行联合学习的及其学习方法。多视图数据在不同的应用中可能有不同的形式。
多视图学习正是利用数据在不同的视图学习的难以程度不同,来发挥视图之间的相互作用,优势互补,协同学习
二、多视图学习关键技术
标准相关分析(Canonical correlation analysis, CCA和协同训练(co-training) 是多视图学习早期研究中的两种代表性技术。到目前为止,多视图学习的思想已经渗透到多个现有的机器学习分支中,并且已经提出了大量多视图学习算法。例如,多视图学习已经应用到了降维、半监督学习、监督学习、主动学习、集成学习 、迁移学习、聚类等问题中。