LWR (Lateral William's %R Indicator) - 慢速威廉指标
1 公式
RSV:= (HHV(HIGH,N)-CLOSE)/(HHV(HIGH,N)-LLV(LOW,N))*100;
LWR1:SMA(RSV,M1,1);
LWR2:SMA(LWR1,M2,1);
2 数据准备
我们以科创50指数 000688 为例,指数开始日期为2019-12-31,数据格式如下:
3 计算过程
def calculate_lwr(df: pd.DataFrame, N=9, M1=3, M2=3) -> pd.DataFrame:
'''
计算 Williams %R 指标及其两条移动平均线 LWR1 和 LWR2。
参数:
df (pd.DataFrame): 包含至少 'high', 'low', 'close' 列的 DataFrame,
分别代表每日最高价、最低价和收盘价。
N (int): 用于计算 Williams %R 的时间窗口大小,默认为9。
M1 (int): 用于计算 LWR1 的指数加权移动平均 (EWMA) 的平滑因子,默认为3。
M2 (int): 用于计算 LWR2 的指数加权移动平均 (EWMA) 的平滑因子,默认为3。
返回:
pd.DataFrame: 包含 Williams %R (rsv) 和两条移动平均线 LWR1 和 LWR2 的 DataFrame。
'''
# 创建一个df的副本以避免修改原始数据
data = df.copy()
# 使用rolling方法计算N周期内的最高价
hn = data['high'].rolling(N, min_periods=1).max()
# 使用rolling方法计算N周期内的最低价
ln = data['low'].rolling(N, min_periods=1).min()
# 计算 Williams %R 指标
# 公式为:(Hn - close) / (Hn - Ln) * 100
# 在分母中加入一个小数值 (epsilon) 以避免除零错误
epsilon = 1e-10 # 很小的一个数,防止除以零
rsv = (hn - data['close']) / (hn - ln + epsilon) * 100
# 计算 LWR1,使用指数加权移动平均 (EWMA)
lwr1 = rsv.ewm(alpha=1/M1, adjust=False).mean()
# 计算 LWR2,同样使用指数加权移动平均 (EWMA)
lwr2 = lwr1.ewm(alpha=1/M2, adjust=False).mean()
# 将计算出的 Williams %R (rsv) 和两条移动平均线 LWR1 和 LWR2 添加到 DataFrame
data['rsv'] = rsv
data['lwr1'] = lwr1
data['lwr2'] = lwr2
# 返回包含所有计算出指标的 DataFrame
return data
4 注意事项
参数N=9,M1=3,M2=3时,计算结果与东方财富软件中不一致
与雪球不一致
与通信达一致