Python 实现股票指标计算——LWR

LWR (Lateral William's %R Indicator) - 慢速威廉指标

1 公式

RSV:= (HHV(HIGH,N)-CLOSE)/(HHV(HIGH,N)-LLV(LOW,N))*100;
LWR1:SMA(RSV,M1,1);
LWR2:SMA(LWR1,M2,1);

2 数据准备

我们以科创50指数 000688 为例,指数开始日期为2019-12-31,数据格式如下:

3 计算过程

def calculate_lwr(df: pd.DataFrame, N=9, M1=3, M2=3) -> pd.DataFrame:
    '''
    计算 Williams %R 指标及其两条移动平均线 LWR1 和 LWR2。

    参数:
    df (pd.DataFrame): 包含至少 'high', 'low', 'close' 列的 DataFrame,
                       分别代表每日最高价、最低价和收盘价。
    N (int): 用于计算 Williams %R 的时间窗口大小,默认为9。
    M1 (int): 用于计算 LWR1 的指数加权移动平均 (EWMA) 的平滑因子,默认为3。
    M2 (int): 用于计算 LWR2 的指数加权移动平均 (EWMA) 的平滑因子,默认为3。

    返回:
    pd.DataFrame: 包含 Williams %R (rsv) 和两条移动平均线 LWR1 和 LWR2 的 DataFrame。
    '''

    # 创建一个df的副本以避免修改原始数据
    data = df.copy()

    # 使用rolling方法计算N周期内的最高价
    hn = data['high'].rolling(N, min_periods=1).max()

    # 使用rolling方法计算N周期内的最低价
    ln = data['low'].rolling(N, min_periods=1).min()

    # 计算 Williams %R 指标
    # 公式为:(Hn - close) / (Hn - Ln) * 100
    # 在分母中加入一个小数值 (epsilon) 以避免除零错误
    epsilon = 1e-10  # 很小的一个数,防止除以零
    rsv = (hn - data['close']) / (hn - ln + epsilon) * 100

    # 计算 LWR1,使用指数加权移动平均 (EWMA)
    lwr1 = rsv.ewm(alpha=1/M1, adjust=False).mean()

    # 计算 LWR2,同样使用指数加权移动平均 (EWMA)
    lwr2 = lwr1.ewm(alpha=1/M2, adjust=False).mean()

    # 将计算出的 Williams %R (rsv) 和两条移动平均线 LWR1 和 LWR2 添加到 DataFrame
    data['rsv'] = rsv
    data['lwr1'] = lwr1
    data['lwr2'] = lwr2

    # 返回包含所有计算出指标的 DataFrame
    return data

4 注意事项

参数N=9,M1=3,M2=3时,计算结果与东方财富软件中不一致

与雪球不一致

与通信达一致

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值