时机成熟之时 - 概率与期望 - 组合计数

我终于知道min-max的期望形式为啥是对的了
题目大意:有n个球,每次等概率的选一个球涂黑。假设T次后所有球都被涂黑了,求 ∑ i = 1 T i k \sum_{i=1}^T i^k i=1Tik的期望。 n , k ≤ 100 n,k\le100 n,k100
题解:这题有很多种推法,自己yy了这么一个:
answer = ∑ i ≥ 1 P ( i ) ∑ k = 1 i j k = ∑ j ≥ 1 j k ∑ i ≥ j P ( i ) = ∑ j ≥ 1 j k ( 1 − ∑ i = 1 j − 1 P ( i ) ) \text{answer}=\sum_{i\ge1}P(i)\sum_{k=1}^ij^k\\ =\sum_{j\ge1}j^k\sum_{i\ge j}P(i)=\sum_{j\ge1}j^k\left(1-\sum_{i=1}^{j-1}P(i)\right) answer=i1P(i)k=1ijk=j1jkijP(i)=j1jk(1i=1j1P(i))
考虑后面那坨 G ( t ) = ∑ i = 1 t P ( t ) G(t)=\sum_{i=1}^tP(t) G(t)=i=1tP(t)表示不超过 t t t次结束的概率,这显然就是
G ( t ) = S ( t , n ) t ! n t = ∑ i = 0 n ( n i ) ( − 1 ) i ( n − i ) t n t G(t)=\frac{S(t,n)t!}{n^t}=\frac{\sum_{i=0}^n\binom ni(-1)^i(n-i)^t}{n^t} G(t)=ntS(t,n)t!=nti=0n(in)(1)i(ni)t
代回去可得:
answer = ∑ j ≥ 1 j k n j − 1 − ∑ i = 0 n ( n i ) ( − 1 ) i ( n − i ) j − 1 n j − 1 = ∑ j ≥ 1 j k n j − 1 − ∑ i = 1 n ( n i ) ( − 1 ) i ( n − i ) j − 1 − n j − 1 n j − 1 = ∑ j ≥ 1 j k ∑ i = 1 n ( n i ) ( − 1 ) i + 1 ( n − i ) j − 1 n j − 1 = ∑ i = 1 n ( n i ) ( − 1 ) i + 1 ∑ j ≥ 1 ( n − i ) j − 1 n j − 1 j k = ( − 1 ) n + 1 + ∑ i = 1 n − 1 ( n i ) ( − 1 ) i + 1 n n − i F k ( n − i n ) \text{answer}=\sum_{j\ge1}j^k\frac{n^{j-1}-\sum_{i=0}^n\binom ni(-1)^i(n-i)^{j-1}}{n^{j-1}}\\ =\sum_{j\ge1}j^k\frac{n^{j-1}-\sum_{i=1}^n\binom ni(-1)^i(n-i)^{j-1}-n^{j-1}}{n^{j-1}}\\ =\sum_{j\ge1}j^k\frac{\sum_{i=1}^n\binom ni(-1)^{i+1}(n-i)^{j-1}}{n^{j-1}}\\ =\sum_{i=1}^n\binom ni(-1)^{i+1}\sum_{j\ge1}\frac{(n-i)^{j-1}}{n^{j-1}}j^k\\ =(-1)^{n+1}+\sum_{i=1}^{n-1}\binom ni(-1)^{i+1}\frac{n}{n-i}F_k\left(\frac{n-i}{n}\right) answer=j1jknj1nj1i=0n(in)(1)i(ni)j1=j1jknj1nj1i=1n(in)(1)i(ni)j1nj1=j1jknj1i=1n(in)(1)i+1(ni)j1=i=1n(in)(1)i+1j1nj1(ni)j1jk=(1)n+1+i=1n1(in)(1)i+1ninFk(nni)
其中:
F k ( q ) = ∑ i ≥ 1 q i i k F k ( q ) q − 1 = ∑ i ≥ 1 q i ( i + 1 ) k F k ( q ) q − 1 = ∑ i ≥ 1 q i ∑ j = 0 k ( k j ) i j F k ( q ) q − 1 = ∑ j = 0 k ( k j ) F j ( q ) = F k ( q ) + ∑ j = 0 k − 1 ( k j ) F j ( q ) F k ( q ) = q 1 − q ( 1 + ∑ j = 0 k − 1 ( k j ) F j ( q ) ) F 0 ( q ) = q 1 − q F_k(q)=\sum_{i\ge1}q^ii^k\\ \frac{F_k(q)}{q}-1=\sum_{i\ge1}q^i(i+1)^k\\ \frac{F_k(q)}{q}-1=\sum_{i\ge1}q^i\sum_{j=0}^k\binom kji^j\\ \frac{F_k(q)}{q}-1=\sum_{j=0}^k\binom kj F_j(q)=F_k(q)+\sum_{j=0}^{k-1}\binom kj F_j(q)\\ F_k(q)=\frac{q}{1-q}\left(1+\sum_{j=0}^{k-1}\binom kjF_j(q)\right)\\ F_0(q)=\frac{q}{1-q} Fk(q)=i1qiikqFk(q)1=i1qi(i+1)kqFk(q)1=i1qij=0k(jk)ijqFk(q)1=j=0k(jk)Fj(q)=Fk(q)+j=0k1(jk)Fj(q)Fk(q)=1qq(1+j=0k1(jk)Fj(q))F0(q)=1qq
这样就可以在O(nk^2)的时间解决本题
还有一些平方时间复杂度做法QwQ

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,v) rep(i,0,(int)v.size()-1)
#define lint long long
#define p 998244353
#define ull unsigned lint
#define db long double
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define gc getchar()
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
typedef set<int>::iterator sit;
inline int inn()
{
	int x,ch;while((ch=gc)<'0'||ch>'9');
	x=ch^'0';while((ch=gc)>='0'&&ch<='9')
		x=(x<<1)+(x<<3)+(ch^'0');return x;
}
const int N=110;
int C[N][N],f[N];
inline int fast_pow(int x,int k,int ans=1) { for(;k;k>>=1,x=(lint)x*x%p) (k&1)?ans=(lint)ans*x%p:0;return ans; }
inline int inv(int x) { return fast_pow(x<0?x+p:x,p-2); }
inline int sol(int x,int s) { return (s&1)?(x?p-x:0):x; }
inline int prelude(int n)
{
	rep(i,0,n) C[i][0]=1;
	rep(i,1,n) rep(j,1,i) C[i][j]=C[i-1][j]+C[i-1][j-1],(C[i][j]>=p?C[i][j]-=p:0);
	return 0;
}
inline int F_k(int q,int k)
{
	int v=(lint)q*inv(1-q)%p;f[0]=v;
	rep(i,1,k)
	{
		f[i]=1;
		rep(j,0,i-1) f[i]=(f[i]+(lint)C[i][j]*f[j])%p;
		f[i]=(lint)v*f[i]%p;
	}
	return f[k];
}
int main()
{
	int n=inn(),k=inn(),q,ans=0;prelude(max(n,k));
	rep(i,1,n-1)
		q=(lint)inv(n)*(n-i)%p,
		ans+=sol((lint)C[n][i]*inv(q)%p*F_k(q,k)%p,i+1),
		(ans>=p?ans-=p:0);
	ans+=sol(1,n+1),(ans>=p?ans-=p:0);
	return !printf("%d\n",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值