左方之地 - 结论 - 组合计数

题目大意:
给定一个序列 A \mathrm A A
问一棵Treap(点的编号是有堆性质的二叉树) ∑ x = 1 n d e p t h ( x ) ∗ A ( x ) \sum_{x=1}^n\mathrm{depth}(x)*\mathrm{A}(x) x=1ndepth(x)A(x)的期望值是多少。
题解:
有个结论是,一个点的深度是这样的:
将其编号的中序遍历写下来,从这个点对应中序遍历的位置向左走,一开始计数器是0,每次遇到一个更小的数字就计数器++,向右同理,最后再加个1.
那么考虑期望的线性性,算x对答案的贡献,等价于计算x>y对答案有贡献的排列有多少,然后+1。
不妨钦定x在y的左边(最后还要乘以2),枚举中间隔着几个位置d,那么比y小的数字都要放在两侧,剩余的随意选:
f ( x ) = ∑ y = 1 x − 1 ∑ d = 0 n − 2 ( n − d − 2 y − 1 ) ( y − 1 ) ! ( n − y − 1 ) ! ( n − d − 1 ) f(x)=\sum_{y=1}^{x-1}\sum_{d=0}^{n-2}\binom{n-d-2}{y-1}(y-1)!(n-y-1)!(n-d-1) f(x)=y=1x1d=0n2(y1nd2)(y1)!(ny1)!(nd1)
最后那一项是枚举x的位置。
f ( x ) = ∑ y = 1 x − 1 ∑ d = 0 n − 2 ( n − d − 2 ) ! ( n − d − 1 ) ( n − y − 1 ) ! ( n − d − y − 1 ) ! = ∑ y = 1 x − 1 ∑ d = 0 n − 2 ( n − d − 1 ) ! ( n − d − y − 1 ) ! y ! ( n − y − 1 ) ! y ! ( n − 1 ) ! ( n − 1 ) ! = = ∑ y = 1 x − 1 ( n − 1 ) ! ( n − 1 y ) ∑ d = 0 n − 2 ( n − d − 1 y ) f(x)=\sum_{y=1}^{x-1}\sum_{d=0}^{n-2}\frac{(n-d-2)!(n-d-1)(n-y-1)!}{(n-d-y-1)!}\\ =\sum_{y=1}^{x-1}\sum_{d=0}^{n-2}\frac{(n-d-1)!}{(n-d-y-1)!y!}\frac{(n-y-1)!y!}{(n-1)!}(n-1)!\\ ==\sum_{y=1}^{x-1}\frac{(n-1)!}{\binom{n-1}{y}}\sum_{d=0}^{n-2}\binom{n-d-1}{y} f(x)=y=1x1d=0n2(ndy1)!(nd2)!(nd1)(ny1)!=y=1x1d=0n2(ndy1)!y!(nd1)!(n1)!(ny1)!y!(n1)!==y=1x1(yn1)(n1)!d=0n2(ynd1)
后半部分:
∑ d = 0 n − 2 ( n − d − 1 y ) = ∑ d = 1 n − 1 ( d y ) = ∑ x = y n − 1 ( x y ) = ( n y + 1 ) \sum_{d=0}^{n-2}\binom{n-d-1}{y}=\sum_{d=1}^{n-1}\binom{d}{y}=\sum_{x=y}^{n-1} \binom{x}{y}=\binom{n}{y+1} d=0n2(ynd1)=d=1n1(yd)=x=yn1(yx)=(y+1n)
因此:
f ( x ) = ∑ y = 1 x − 1 ( n − 1 ) ! ( n − 1 y ) ( n y + 1 ) = f ( x − 1 ) + ( n − 1 ) ! ( n − 1 x − 1 ) ( n x ) f(x)=\sum_{y=1}^{x-1}\frac{(n-1)!}{\binom{n-1}{y}}\binom{n}{y+1}=f(x-1)+\frac{(n-1)!}{\binom{n-1}{x-1}}\binom{n}{x} f(x)=y=1x1(yn1)(n1)!(y+1n)=f(x1)+(x1n1)(n1)!(xn)
最后答案就是:
∑ x = 1 n A ( x ) [ 2 f ( x ) n ! + 1 ] \sum_{x=1}^n\mathrm{A}(x)\left[\frac{2f(x)}{n!}+1\right] x=1nA(x)[n!2f(x)+1]
就做完了。
upd:其实后面还可以继续稍微化简一下:
f ( x ) = f ( x − 1 ) + n ! x f(x)=f(x-1)+\frac{n!}{x} f(x)=f(x1)+xn!不过没啥本质区别就是了……

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,v) rep(i,0,(int)v.size()-1)
#define lint long long
#define mod 998244353
#define db long double
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define gc getchar()
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
typedef set<int>::iterator sit;
inline int inn()
{
	int x,ch;while((ch=gc)<'0'||ch>'9');
	x=ch^'0';while((ch=gc)>='0'&&ch<='9')
		x=(x<<1)+(x<<3)+(ch^'0');return x;
}
const int N=100010;
int fac[N],facinv[N];
inline int C(int n,int m) { if(n<0||m<0||n<m) return 0;return (lint)fac[n]*facinv[n-m]%mod*facinv[m]%mod; }
inline int fast_pow(int x,int k,int ans=1) { for(;k;k>>=1,x=(lint)x*x%mod) (k&1)?ans=(lint)ans*x%mod:0;return ans; }
inline int prelude(int n)
{
	rep(i,fac[0]=1,n) fac[i]=(lint)fac[i-1]*i%mod;
	facinv[n]=fast_pow(fac[n],mod-2);
	for(int i=n-1;i>=0;i--) facinv[i]=(i+1ll)*facinv[i+1]%mod;
	return 0;
}
int a[N],f[N];
int main()
{
	int n=inn(),ans=0;prelude(n);rep(i,1,n) a[i]=inn()%mod;f[1]=0;
	rep(x,2,n) f[x]=(f[x-1]+(lint)fac[n-1]*fast_pow(C(n-1,x-1),mod-2)%mod*C(n,x)%mod)%mod;
	rep(x,1,n) ans=(ans+a[x]*(2ll*f[x]%mod*facinv[n]%mod+1)%mod)%mod;
	return !printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值