题目大意:
给定一个序列
A
\mathrm A
A。
问一棵Treap(点的编号是有堆性质的二叉树)
∑
x
=
1
n
d
e
p
t
h
(
x
)
∗
A
(
x
)
\sum_{x=1}^n\mathrm{depth}(x)*\mathrm{A}(x)
∑x=1ndepth(x)∗A(x)的期望值是多少。
题解:
有个结论是,一个点的深度是这样的:
将其编号的中序遍历写下来,从这个点对应中序遍历的位置向左走,一开始计数器是0,每次遇到一个更小的数字就计数器++,向右同理,最后再加个1.
那么考虑期望的线性性,算x对答案的贡献,等价于计算x>y对答案有贡献的排列有多少,然后+1。
不妨钦定x在y的左边(最后还要乘以2),枚举中间隔着几个位置d,那么比y小的数字都要放在两侧,剩余的随意选:
f
(
x
)
=
∑
y
=
1
x
−
1
∑
d
=
0
n
−
2
(
n
−
d
−
2
y
−
1
)
(
y
−
1
)
!
(
n
−
y
−
1
)
!
(
n
−
d
−
1
)
f(x)=\sum_{y=1}^{x-1}\sum_{d=0}^{n-2}\binom{n-d-2}{y-1}(y-1)!(n-y-1)!(n-d-1)
f(x)=y=1∑x−1d=0∑n−2(y−1n−d−2)(y−1)!(n−y−1)!(n−d−1)
最后那一项是枚举x的位置。
f
(
x
)
=
∑
y
=
1
x
−
1
∑
d
=
0
n
−
2
(
n
−
d
−
2
)
!
(
n
−
d
−
1
)
(
n
−
y
−
1
)
!
(
n
−
d
−
y
−
1
)
!
=
∑
y
=
1
x
−
1
∑
d
=
0
n
−
2
(
n
−
d
−
1
)
!
(
n
−
d
−
y
−
1
)
!
y
!
(
n
−
y
−
1
)
!
y
!
(
n
−
1
)
!
(
n
−
1
)
!
=
=
∑
y
=
1
x
−
1
(
n
−
1
)
!
(
n
−
1
y
)
∑
d
=
0
n
−
2
(
n
−
d
−
1
y
)
f(x)=\sum_{y=1}^{x-1}\sum_{d=0}^{n-2}\frac{(n-d-2)!(n-d-1)(n-y-1)!}{(n-d-y-1)!}\\ =\sum_{y=1}^{x-1}\sum_{d=0}^{n-2}\frac{(n-d-1)!}{(n-d-y-1)!y!}\frac{(n-y-1)!y!}{(n-1)!}(n-1)!\\ ==\sum_{y=1}^{x-1}\frac{(n-1)!}{\binom{n-1}{y}}\sum_{d=0}^{n-2}\binom{n-d-1}{y}
f(x)=y=1∑x−1d=0∑n−2(n−d−y−1)!(n−d−2)!(n−d−1)(n−y−1)!=y=1∑x−1d=0∑n−2(n−d−y−1)!y!(n−d−1)!(n−1)!(n−y−1)!y!(n−1)!==y=1∑x−1(yn−1)(n−1)!d=0∑n−2(yn−d−1)
后半部分:
∑
d
=
0
n
−
2
(
n
−
d
−
1
y
)
=
∑
d
=
1
n
−
1
(
d
y
)
=
∑
x
=
y
n
−
1
(
x
y
)
=
(
n
y
+
1
)
\sum_{d=0}^{n-2}\binom{n-d-1}{y}=\sum_{d=1}^{n-1}\binom{d}{y}=\sum_{x=y}^{n-1} \binom{x}{y}=\binom{n}{y+1}
d=0∑n−2(yn−d−1)=d=1∑n−1(yd)=x=y∑n−1(yx)=(y+1n)
因此:
f
(
x
)
=
∑
y
=
1
x
−
1
(
n
−
1
)
!
(
n
−
1
y
)
(
n
y
+
1
)
=
f
(
x
−
1
)
+
(
n
−
1
)
!
(
n
−
1
x
−
1
)
(
n
x
)
f(x)=\sum_{y=1}^{x-1}\frac{(n-1)!}{\binom{n-1}{y}}\binom{n}{y+1}=f(x-1)+\frac{(n-1)!}{\binom{n-1}{x-1}}\binom{n}{x}
f(x)=y=1∑x−1(yn−1)(n−1)!(y+1n)=f(x−1)+(x−1n−1)(n−1)!(xn)
最后答案就是:
∑
x
=
1
n
A
(
x
)
[
2
f
(
x
)
n
!
+
1
]
\sum_{x=1}^n\mathrm{A}(x)\left[\frac{2f(x)}{n!}+1\right]
x=1∑nA(x)[n!2f(x)+1]
就做完了。
upd:其实后面还可以继续稍微化简一下:
f
(
x
)
=
f
(
x
−
1
)
+
n
!
x
f(x)=f(x-1)+\frac{n!}{x}
f(x)=f(x−1)+xn!不过没啥本质区别就是了……
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,v) rep(i,0,(int)v.size()-1)
#define lint long long
#define mod 998244353
#define db long double
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define gc getchar()
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
typedef set<int>::iterator sit;
inline int inn()
{
int x,ch;while((ch=gc)<'0'||ch>'9');
x=ch^'0';while((ch=gc)>='0'&&ch<='9')
x=(x<<1)+(x<<3)+(ch^'0');return x;
}
const int N=100010;
int fac[N],facinv[N];
inline int C(int n,int m) { if(n<0||m<0||n<m) return 0;return (lint)fac[n]*facinv[n-m]%mod*facinv[m]%mod; }
inline int fast_pow(int x,int k,int ans=1) { for(;k;k>>=1,x=(lint)x*x%mod) (k&1)?ans=(lint)ans*x%mod:0;return ans; }
inline int prelude(int n)
{
rep(i,fac[0]=1,n) fac[i]=(lint)fac[i-1]*i%mod;
facinv[n]=fast_pow(fac[n],mod-2);
for(int i=n-1;i>=0;i--) facinv[i]=(i+1ll)*facinv[i+1]%mod;
return 0;
}
int a[N],f[N];
int main()
{
int n=inn(),ans=0;prelude(n);rep(i,1,n) a[i]=inn()%mod;f[1]=0;
rep(x,2,n) f[x]=(f[x-1]+(lint)fac[n-1]*fast_pow(C(n-1,x-1),mod-2)%mod*C(n,x)%mod)%mod;
rep(x,1,n) ans=(ans+a[x]*(2ll*f[x]%mod*facinv[n]%mod+1)%mod)%mod;
return !printf("%d\n",ans);
}