
大数据
文章平均质量分 87
《大数据探索》专栏深入探讨了当今数字化世界中的大数据现象及其影响。从数据驱动决策到技术创新,我们探讨大数据如何改变我们生活和工作的方方面面。本专栏都为您带来丰富而实用的内容。我们将研究大数据技术、分析数据管理策略,并探讨数据对企业战略、科学研究和社会影响的重要性。加入我们,一起探索数据世界的无限可能
星川皆无恙
大数据技术领域优质创作者 阿里云开发Clouder技能认证 持续更新各种大数据技术讲解及优质项目 苦尽甘来时,我再跟你讲来时的路
展开
-
大模型学习:Deepseek+dify零成本部署本地运行实用教程(超级详细!建议收藏)
Dify 是一个开源的大语言模型(LLM)应用开发平台,它致力于为开发者提供一站式、低代码甚至无代码的 AI 应用开发体验。Dify 核心目标是降低 AI 应用开发门槛,支持从原型设计到生产部署的全流程管理。Dify 拥有直观的可视化界面,开发者无需深入底层代码,只需通过简单的拖拽、配置操作,就能定义应用的 Prompt(提示词)、上下文以及各种插件。原创 2025-05-17 20:32:15 · 933 阅读 · 0 评论 -
已解决(亲测有效!):安装部署Docker Deskpot之后启动出现Docker Engine Stopped!
已解决(亲测有效!):安装部署Docker Deskpot之后启动出现Docker Engine Stopped!文章里面的解决过程和思路是我个人实际情况整理,不同的电脑环境或许有差异,有不同解决思路和问题可以留下评论互相探讨解决。希望对你有所帮助!原创 2025-05-15 14:52:33 · 947 阅读 · 0 评论 -
大数据产品销售数据分析:基于Python机器学习产品销售数据爬虫可视化分析预测系统设计与实现
本项目旨在设计与实现一个基于Python机器学习的产品销售数据爬虫可视化分析预测系统,结合现代数据技术,提升企业产品销售管理的智能化与数字化水平。该系统主要包括数据管理和后台管理两个核心模块,其中数据管理部分涵盖数据爬取、数据存储、数据分析、数据可视化以及基于多元线性回归的销量预测五大功能模块。原创 2025-05-06 14:40:28 · 1350 阅读 · 0 评论 -
C语言程序设计:算法程序的灵魂
对数据的描述。在程序中要指定用到哪些数据,以及这些数据的类型和数据的组织形式。对操作的描述。即要求计算机进行操作的步骤。广义地说,为解决一个问题而采取的方法和步骤,就称为“算法”。对同一个问题,可以有不同的解题方法和步骤。为了有效地进行解题,不仅需要保证算法正确,还要考虑算法的质量,选择合适的算法。数值运算的目的是求数值解。由于数值运算往往有现成的模型,可以运用数值分析方法,因此对数值运算的算法的研究比较深入,算法比较成熟。计算机在非数值运算方面的应用远超在数值运算方面的应用。非数值运算的种类繁多,要求各异原创 2025-01-25 21:39:26 · 1280 阅读 · 3 评论 -
大数据k-means聚类算法:基于k-means聚类算法+NLP微博舆情数据爬虫可视化分析推荐系统
K-means聚类算法是一种常用的文本数据分析技术,通过对微博内容进行聚类,可以将相似主题或内容的微博归为同一类别,从而为用户提供更加个性化的新闻推荐服务。K-means聚类算法是一种无监督学习算法,其主要目标是将数据集中的样本划分为K个不同的簇,使得同一簇内的样本彼此相似度较高,而不同簇之间的样本相似度较低。在微博舆情分析系统中,我们可以将微博内容视作数据集中的样本,通过K-means算法将微博内容进行聚类,然后根据用户输入的关键词或内容,推荐属于同一簇的微博内容。原创 2025-01-24 18:46:07 · 2473 阅读 · 0 评论 -
C语言程序设计:程序设计和C语言
C语言作为一门通用编程语言,被广泛应用于各种领域,包括系统软件(如操作系统、编译器)、应用软件(如数据库、图形处理软件)以及嵌入式系统、网络编程等领域。C语言对现代编程语言如C++、Java、Python等影响深远,是许多语言的基础。原创 2024-12-30 18:11:34 · 2206 阅读 · 1 评论 -
大数据与人工智能:脑科学与人工神经网络ANN
人工神经网络(ANN, Artificial Neural Networks)是一种受生物神经网络启发的计算模型,用于模拟人类大脑处理信息的方式。它由大量相互连接的节点(称为神经元)组成,这些神经元通过权重连接形成网络。ANN的基础构成包括输入层、隐藏层和输出层。输入层接收原始数据,隐藏层负责提取和处理数据的特征,而输出层则提供最终结果。每个神经元通过激活函数(如Sigmoid、ReLU等)处理输入信号,并将结果传递给下一个层的神经元。这种结构使得ANN能够进行复杂的模式识别和数据分类。原创 2024-09-10 01:21:58 · 2315 阅读 · 17 评论 -
大数据技术之Nginx实战:服务搭建与命令管理
Nginx(“engine x”)是一个高性能的 HTTP /反向代理的服务器及电子邮件(IMAP/POP3)代理服务器。官方测试nginx能够支撑5万并发,并且cpu,内存等资源消耗却非常低,运行非常稳定。最重要的是开源,免费,可商用的。Nginx还支持热部署,几乎可以做到7 * 24 小时不间断运行,即时运行数个月也不需要重启,还能够在不间断服务的情况下对软件进行升级维护。作为开源软件,Nginx 不仅免费使用,还允许商用,具有广泛的社区支持和灵活的配置选项,非常适合构建高性能、高可用性的 Web 服务原创 2024-09-09 00:52:44 · 1450 阅读 · 11 评论 -
大数据机器学习算法岗位分析推荐:基于Python的招聘大数据爬虫可视化分析推荐系统
该系统整合了多个关键功能,包括使用Selenium库进行数据爬取、爬虫调度和前端页面选择功能(如城市、爬取页数和职位关键字)。系统还具备数据管理和可视化功能,能够分析薪资待遇、学历分布和职位关键字。通过引入机器学习协同过滤算法,系统能根据用户的求职意向提供个性化职位推荐,并在求职列表中展示推荐结果。在后台,系统支持用户自定义设置和管理已爬取数据。旨在构建一个功能全面、易用且具实际应用价值的招聘数据爬虫、可视化分析和推荐系统,提升求职效率与精准度。原创 2024-08-10 12:48:30 · 3268 阅读 · 0 评论 -
大数据CloudSim应用实践:基于CloudSimExamle6.java修改(超详细教程)
在这篇文章中,我们将深入探讨如何基于CloudSimExample6.java对CloudSim进行定制化修改,以满足具体的大数据应用需求。CloudSim作为一款广泛使用的云计算模拟框架,支持模拟云环境中的各种场景。本教程将提供详细的步骤和技巧,从环境配置、代码修改到最终的测试和优化,确保读者能够有效地应用CloudSim进行大数据模拟。无论您是CloudSim的新手还是有经验的开发者,本教程都将通过实用的实例和清晰的解释帮助您掌握在大数据场景下的CloudSim应用技巧。原创 2024-08-10 12:32:04 · 1531 阅读 · 1 评论 -
大数据Docker技术全景:推动云原生架构的关键力量
Docker,作为当今云计算领域的一颗璀璨明星,已经深刻改变了我们对软件开发、部署和运维的认识。从简单的容器化概念出发,Docker不仅仅是一种技术实现,它更是一种服务于云原生时代的哲学和实践。Docker的普及和成功,部分归功于它所提供的轻量级、可移植、自给自足的容器环境,这种环境为应用的快速迭代、灵活部署和高效运维提供了坚实基础。原创 2024-08-05 23:43:40 · 928 阅读 · 8 评论 -
大数据Kubernetes(简称K8s):架构、应用与优化
Kubernetes(简称K8s)是一个开源的容器编排系统,用于自动化应用程序的部署、扩展和管理。它最初是由Google内部的Borg系统启发并设计的,于2014年作为开源项目首次亮相。Kubernetes不断演进,增加了对多种云平台的支持,改进了网络和存储功能,增强了安全性。其社区也不断扩大,衍生出众多相关项目和工具,形成了一个庞大的生态系统。Kubernetes的架构设计旨在提供一个分布式、可扩展且高度可用的容器编排平台。它由多个组件构成,协同工作以管理集群的生命周期和操作。原创 2024-06-17 17:57:18 · 1444 阅读 · 28 评论 -
大数据Kubernetes(K8S)命令指南 超级详细!
Kubernetes的集群管理与维护命令涉及到集群的日常运行和维护任务,包括监控资源、管理节点和配置集群级别的设置。这些指令为开发人员和运维人员提供了强大的工具集,用于深入理解和管理 Kubernetes 集群的复杂性,提高日常运维的效率和效果。这些命令为开发者和系统管理员提供了广泛的工具,以灵活地处理Kubernetes资源的生命周期,包括创建、更新、删除和自动化管理。这些命令为集群管理员提供了丰富的工具,用于监控和管理Kubernetes集群的健康和性能,确保集群的稳定性和效率。原创 2024-06-17 17:52:17 · 817 阅读 · 2 评论 -
大数据农产品数据分析:基于Python机器学习算法农产品爬虫可视化分析预测系统
本研究致力于设计并实现了一款基于Python的农产品可视化分析预测系统,系统主要利用requests库进行网络数据爬取,BeautifulSoup库解析网页内容,从惠农网获取相关农产品信息。系统功能包括数据价格分析、管理查询等,用户可以根据农产品名称进行机器学习模型的训练与预测,采用sklearn中的多元线性回归模型进行未来一周农产品价格的预测,并通过可视化分析展示结果。原创 2024-05-31 21:43:53 · 4155 阅读 · 12 评论 -
大数据机器学习:常见模型评估指标
模型评估是指在机器学习中,对于一个具体方法输出的最终模型,使用一些指标和方法来评估它的泛化能力。这一步通常在模型训练和模型选择之后,正式部署模型之前进行。模型评估不针对模型本身,而是针对问题和数据,因此可以用来评价不同方法的模型的泛化能力,以此决定最终模型的选择。原创 2024-04-29 12:54:04 · 2086 阅读 · 24 评论 -
大数据目标检测识别:从滑动窗口到YOLO、Transformer目标检测的技术革新
本篇文章全面回顾了目标检测技术的演变历程,从早期的滑动窗口和特征提取方法,到深度学习的兴起,尤其是CNN在目标检测中的革命性应用,再到近年来YOLO系列和Transformer在这一领域的创新实践。这一旅程不仅展示了目标检测技术的发展脉络,还反映了计算机视觉领域不断进步的动力和方向。技术领域的一个独特洞见是,目标检测的发展与计算能力的提升、数据可用性的增加、以及算法创新紧密相关。从早期依赖手工特征的方法,到今天的深度学习和Transformer,我们看到了技术演进与时代背景的深度融合。原创 2024-04-29 12:45:25 · 1461 阅读 · 0 评论 -
大数据云计算 - 弹性计算技术全解与实践
弹性计算是一种计算模型,它允许系统根据需要动态地分配和回收计算资源。与传统的、固定的硬件资源不同,弹性计算能够迅速适应业务或应用的不断变化的需求。云计算和弹性计算服务(ECS)已经深刻地改变了我们构建和运行应用的方式。从基础概念、核心组件,到选型考虑、实践案例和高级优化实践,每一环节都有其独特的挑战和机会。但在这个多元复杂的技术领域中,一些共通的主题和洞见仍然显而易见。原创 2024-02-21 22:32:33 · 1921 阅读 · 14 评论 -
解决登录Django后台管理时候系统显示:127.0.0.1 拒绝了我们的连接请求(亲测有效!)
今天在用Django框架帮别人做一个基于python机器学习抖音短视频推荐系统项目时候无法正常显示系统功能页面,进入Django后台显示:`127.0.0.1 拒绝了我们的连接请求`,所有工具栏点开页面都是不能正常请求,显示错误信息。把里面的`'django.middleware.clickjacking.XFrameOptionsMiddleware'`,注释或者删除即可。这段代码的作用是将Django框架的点击劫持防护中间件添加到中间件处理链中,以提高应用的安全性。原创 2024-02-02 19:40:02 · 2457 阅读 · 15 评论 -
大数据期望最大化(EM)算法:从理论到实战全解析
期望最大化算法(Expectation-Maximization Algorithm,简称EM算法)是一种迭代优化算法,主要用于估计含有隐变量(latent variables)的概率模型参数。它在机器学习和统计学中有着广泛的应用,包括但不限于高斯混合模型(Gaussian Mixture Model, GMM)、隐马尔可夫模型(Hidden Markov Model, HMM)以及各种聚类和分类问题。原创 2024-01-27 18:05:51 · 2413 阅读 · 24 评论 -
大数据关联规则挖掘:Apriori算法的深度探讨
Apriori算法是一种用于挖掘数据集中频繁项集的算法,进而用于生成关联规则。这种算法在数据挖掘、机器学习、市场篮子分析等多个领域都有广泛的应用。关联规则挖掘是数据挖掘中的一个重要分支,其目标是发现在一个数据集中变量间存在的有趣的关联或模式。假设在一个零售商的交易数据中,如果客户购买了啤酒,他们也很有可能购买薯片。这里的“啤酒”和“薯片”就形成了一个关联规则。频繁项集是在数据集中出现次数大于或等于最小支持度(Minimum Support Threshold)的项的集合。原创 2024-01-21 16:24:47 · 2111 阅读 · 22 评论 -
大数据回归算法全解析:一文读懂机器学习中的回归模型
回归问题是预测一个连续值的输出(因变量)基于一个或多个输入(自变量或特征)的机器学习任务。换句话说,回归模型尝试找到自变量和因变量之间的内在关系。小规模数据集:样本数量较少(通常小于 1000)。大规模数据集:样本数量较多(通常大于 10000)。鲁棒性是模型对于异常值或噪声的抗干扰能力。如果因变量和自变量之间的关系不能通过直线来合理描述,则称为非线性关系。解释性是指模型能否提供直观的解释,以便更好地理解模型是如何做出预测的。数据质量是指数据的准确性、完整性和一致性。原创 2024-01-21 16:21:06 · 1980 阅读 · 2 评论 -
从规则到神经网络:机器翻译技术的演化之路
机器翻译(Machine Translation, MT)是人工智能领域的一项关键技术,旨在实现不同语言之间的自动翻译。自从20世纪中叶首次提出以来,机器翻译已从简单的字面翻译演变为今天高度复杂和精准的语义翻译。这项技术的发展不仅彻底改变了全球信息交流的方式,而且对于经济、政治和文化交流产生了深远影响。在探讨了机器翻译的历史、核心技术、神经机器翻译的深入分析、模型优化与挑战,以及实际应用与案例后,我们可以总结出一些独特的洞见,这些洞见不仅彰显了机器翻译技术的成就和潜力,也指出了未来的发展方向。原创 2024-01-20 16:11:19 · 2154 阅读 · 15 评论 -
大数据MapReduce:从原理到实战的全面指南
MapReduce是一种编程模型,用于大规模数据集(特别是非结构化数据)的并行处理。这个模型的核心思想是将大数据处理任务分解为两个主要步骤:Map和Reduce。Map阶段:接受输入数据,并将其分解成一系列的键值对。Reduce阶段:处理由Map阶段产生的键值对,进行某种形式的聚合操作,最终生成输出结果。这两个阶段的组合使得MapReduce能够解决一系列复杂的数据处理问题,并可方便地进行分布式实现。通过自定义Partitioner,你可以控制数据的分布。原创 2024-01-20 16:06:30 · 1941 阅读 · 2 评论 -
大数据深度学习卷积神经网络CNN:CNN结构、训练与优化一文全解
卷积神经网络是一种前馈神经网络,它的人工神经元可以响应周围单元的局部区域,从而能够识别视觉空间的部分结构特征。卷积层: 通过卷积操作检测图像的局部特征。激活函数: 引入非线性,增加模型的表达能力。池化层: 减少特征维度,增加模型的鲁棒性。全连接层: 在处理空间特征后,全连接层用于进行分类或回归。卷积神经网络的这些组件协同工作,使得CNN能够从原始像素中自动学习有意义的特征层次结构。随着深度增加,这些特征从基本形状和纹理逐渐抽象为复杂的对象和场景表现。原创 2024-01-14 00:32:16 · 8338 阅读 · 81 评论 -
大数据深度学习ResNet深度残差网络详解:网络结构解读与PyTorch实现教程
深度残差网络(Deep Residual Networks,简称ResNet)自从2015年首次提出以来,就在深度学习领域产生了深远影响。通过一种创新的“残差学习”机制,ResNet成功地训练了比以往模型更深的神经网络,从而显著提高了多个任务的性能。深度残差网络通过引入残差学习和特殊的网络结构,解决了传统深度神经网络中的梯度消失问题,并实现了高效、可扩展的深层模型。梯度消失问题发生在神经网络的反向传播过程中,具体表现为网络中某些权重的梯度接近或变为零。这导致这些权重几乎不会更新,从而阻碍了网络的训练。原创 2024-01-14 00:17:39 · 4656 阅读 · 4 评论 -
大数据深度学习长短时记忆网络(LSTM):从理论到PyTorch实战演示
LSTM的逻辑结构通过其独特的门控机制为处理具有复杂依赖关系的序列数据提供了强大的手段。其对信息流的精细控制和长期记忆的能力使其成为许多序列建模任务的理想选择。了解LSTM的这些逻辑概念有助于更好地理解其工作原理,并有效地将其应用于实际问题。我们首先定义一个LSTM类,该类使用PyTorch的nn.Module作为基类。out, _ = self.lstm(x) # LSTM层out = self.fc(out[:, -1, :]) # 全连接层return outinput_size。原创 2024-01-08 13:20:20 · 2597 阅读 · 24 评论 -
Java后端开发——Mybatis实验
在项目的src/main/java目录下创建com.javaweb.pojo包,在com.javaweb.pojo包下创建User类,该类用于封装User对象的属性。在项目的src目录下创建数据库连接的配置文件,这里将其命名为db.properties,在该文件中配置数据库连接的参数。在映射文件CustomerMapper.xml中,添加使用元素执行动态SQL元素,测试并显示结果。在映射文件CustomerMapper.xml中,添加使用元素执行动态SQL元素,测试并显示结果。原创 2024-01-08 12:49:10 · 1849 阅读 · 2 评论 -
Java后端开发——SSM整合实验
创建名称为JdbcConfig的类,用于获取数据库连接信息并定义创建数据源的对象方法,并定义getDataSource()方法,用于创建DruidDataSource对象。id=1,页面显示效果如图所示。6.创建名称为BookService的业务层接口,在BookService接口中定义findBookById()方法,通过id获取对应的Book信息。4.创建名称为BookMapper的持久层接口,在BookMapper接口中定义findBookById()方法,通过图书id获取对应的图书信息。原创 2024-01-08 12:34:59 · 1772 阅读 · 2 评论 -
Java后端开发——Ajax、jQuery和JSON
Ajax全称是Asynchronous Javascript and XML,即异步的JavaScript和 XML。Ajax是一种Web应用技术,该技术是在JavaScript、DOM、服务器配合下,实现浏览器向服务器发送异步请求。Ajax异步请求方式不向服务器发出请求,会得到数据后再更新页面(通过DOM操作修改页面内容),整个过程不会发生页面跳转或刷新操作。传统请求方式和Ajax异步请求方式区别。原创 2024-01-05 13:29:13 · 2060 阅读 · 23 评论 -
Java后端开发——Spring实验
Spring框架是一个开放源代码的J2EE应用程序框架,由Rod Johnson发起,是针对bean的生命周期进行管理的轻量级容器(lightweight container)。 Spring解决了开发者在J2EE开发中遇到的许多常见的问题,提供了功能强大IOC、AOP及Web MVC等功能。Spring可以单独应用于构筑应用程序,也可以和Struts、Webwork、Tapestry等众多Web框架组合使用,并且可以与 Swing等桌面应用程序AP组合。因此, Spring不仅仅能应用于J2EE应用程序之原创 2024-01-03 23:04:29 · 3073 阅读 · 22 评论 -
OpenCV实战:从图像处理到深度学习的全面指南
在这篇博客中,我们探讨了如何使用OpenCV进行各种图像处理和深度学习任务。从最基本的图像读取和显示,到复杂的图像变换、图像分割、边缘检测,再到深度学习的图像分类和物体检测,我们都有详细的代码和解释。OpenCV是一个强大而且易于使用的库,它为图像处理和计算机视觉提供了许多工具。无论你是一名研究者,还是一名开发者,或者只是一个对图像处理和计算机视觉感兴趣的初学者,OpenCV都可以帮助你快速实现你的想法。原创 2023-12-27 23:15:46 · 3166 阅读 · 7 评论 -
大数据机器学习深度解读ROC曲线:技术解析与实战应用
本文全面探讨了ROC曲线(Receiver Operating Characteristic Curve)的重要性和应用,从其历史背景、数学基础到Python实现以及关键评价指标。文章旨在提供一个深刻而全面的视角,以帮助大家更好地理解和应用ROC曲线在模型评估中的作用。原创 2023-12-14 13:19:38 · 2375 阅读 · 20 评论 -
大数据机器学习深度解读DBSCAN聚类算法:技术与实战全解析
在机器学习的众多子领域中,聚类算法一直占据着不可忽视的地位。它们无需预先标注的数据,就能将数据集分组,组内元素相似度高,组间差异大。这种无监督学习的能力,使得聚类算法成为探索未知数据的有力工具。DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是这一领域的杰出代表,它以其独特的密度定义和能力,处理有噪声的复杂数据集,揭示了数据中潜藏的自然结构。原创 2023-12-13 23:09:13 · 3296 阅读 · 0 评论 -
大数据机器学习与深度学习—— 生成对抗网络(GAN)
GAN包含有两个模型,一个是生成模型(generative model),一个是判别模型(discriminative model)。生成模型的任务是生成看起来自然真实的、和原始数据相似的实例。判别模型的任务是判断给定的实例看起来是自然真实的还是人为伪造的(真实实例来源于数据集,伪造实例来源于生成模型)。原创 2023-12-13 22:37:46 · 1333 阅读 · 0 评论 -
多模态AI:技术深掘与应用实景解析
多模态AI代表着人工智能技术的一次重大飞跃。通过整合和分析来自不同感知模式的数据,它不仅提高了机器的理解能力,还开辟了AI在各行各业的广泛应用。从提升医疗诊断的准确性到改善顾客的购物体验,多模态AI正在成为推动社会进步的重要力量。原创 2023-12-13 22:26:27 · 1066 阅读 · 0 评论 -
大数据云计算——使用Prometheus-Operator进行K8s集群监控
在非operator配置的普罗中我们监控k8s集群都是通过配置configmap进行服务发现和指标拉取。切换到prometheus-operator难免会有些使用问题。不少用户已经习惯底层配置自动发现的方式。当过渡到servicemonitor或者podmonitor或多或少不习惯。所以下面就为大家介绍一下Prometheus-Operator,以及servicemonitor的使用方法原创 2023-12-13 22:22:17 · 1693 阅读 · 0 评论 -
大数据技术之Storm的安装与配置(从零开始超级详细!)
Apache Storm作为大数据处理的实时计算系统,在大数据技术领域扮演着重要的角色,其意义主要体现在以下几个方面:实时数据处理: Storm专注于实时流数据处理,具有低延迟和高吞吐量的特性。它能够在数据流中进行实时计算和分析,使得用户能够即时获取和处理数据,满足了许多场景下对于实时性的需求,如金融交易监控、实时报警系统等。可伸缩性和高性能: Storm具备良好的横向扩展能力,能够轻松地扩展到大规模集群,以处理大量数据和并发计算任务。其高性能和可伸缩性使得它适用于处理高负载和高并发的实时数据流。原创 2023-12-13 21:58:54 · 2966 阅读 · 1 评论 -
大数据云计算之OpenStack
本文深入探讨了大数据云计算领域中的一个关键技术——OpenStack。OpenStack是一种开源的云计算平台,广泛应用于构建和管理大规模的云基础设施。文章从基本概念出发,详细介绍了OpenStack的架构、组件以及其在大数据处理中的应用实践。原创 2023-12-13 21:26:28 · 1471 阅读 · 0 评论 -
大数据CloudSim应用实践
本文深入探讨了大数据技术在云计算仿真平台CloudSim中的应用实践。通过在CloudSim环境中构建大数据场景,我们研究了不同规模和特性的数据集对云计算性能的影响。首先,我们介绍了CloudSim的基本原理和大数据处理的背景。接着,通过设计和实施一系列实验,我们评估了在CloudSim中运行大数据应用时的资源利用效率、性能指标和系统响应时间。研究结果表明,在不同数据规模下,CloudSim能够有效模拟大数据处理的性能,并提供了对云计算环境下大数据应用行为的深刻理解。原创 2023-12-13 21:18:28 · 1334 阅读 · 0 评论 -
云计算与大数据技术应用知识及案列
云计算是一种动态扩展的计算模式,通过网络将虚拟化的资源作为服务提供;云计算是一种无处不在的、便捷的通过互联网访问一个可定制的IT资源(IT资源包括网络、服务器、存储、应用软件和服务)共享池,并是一种按使用量付费的模式,它能够通过最少量的管理或与服务供应商的互动实现计算资源的迅速供给和释放;云计算是基于互联网服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。原创 2023-12-13 20:56:38 · 1883 阅读 · 0 评论