
大数据实战
文章平均质量分 93
大数据实战学习
星川皆无恙
大数据技术领域优质创作者 阿里云开发Clouder技能认证 持续更新各种大数据技术讲解及优质项目 苦尽甘来时,我再跟你讲来时的路
展开
-
大数据Java后端技术:基于SpringBoot+Bootstrap框架的学生宿舍管理系统的设计与实现
SpringBoot框架Spring Boot是Pivotal团队的一个新框架,旨在简化新Spring应用程序的初始设置和开发。该框架使用特定的配置方法,无需开发人员定义样板配置。通过这种方式,Spring Boot旨在成为蓬勃发展的快速应用程序开发领域的领导者。Spring Boot特点:1、创建一个单独的Spring应用程序:2、嵌入式Tomcat,无需部署WAR文件:3、简化Maven配置;4、自动配置Spring;原创 2023-11-24 10:33:15 · 1405 阅读 · 12 评论 -
已解决(亲测有效!):安装部署Docker Deskpot之后启动出现Docker Engine Stopped!
已解决(亲测有效!):安装部署Docker Deskpot之后启动出现Docker Engine Stopped!文章里面的解决过程和思路是我个人实际情况整理,不同的电脑环境或许有差异,有不同解决思路和问题可以留下评论互相探讨解决。希望对你有所帮助!原创 2025-05-15 14:52:33 · 947 阅读 · 0 评论 -
大数据k-means聚类算法:基于k-means聚类算法+NLP微博舆情数据爬虫可视化分析推荐系统
K-means聚类算法是一种常用的文本数据分析技术,通过对微博内容进行聚类,可以将相似主题或内容的微博归为同一类别,从而为用户提供更加个性化的新闻推荐服务。K-means聚类算法是一种无监督学习算法,其主要目标是将数据集中的样本划分为K个不同的簇,使得同一簇内的样本彼此相似度较高,而不同簇之间的样本相似度较低。在微博舆情分析系统中,我们可以将微博内容视作数据集中的样本,通过K-means算法将微博内容进行聚类,然后根据用户输入的关键词或内容,推荐属于同一簇的微博内容。原创 2025-01-24 18:46:07 · 2473 阅读 · 0 评论 -
大数据机器学习算法岗位分析推荐:基于Python的招聘大数据爬虫可视化分析推荐系统
该系统整合了多个关键功能,包括使用Selenium库进行数据爬取、爬虫调度和前端页面选择功能(如城市、爬取页数和职位关键字)。系统还具备数据管理和可视化功能,能够分析薪资待遇、学历分布和职位关键字。通过引入机器学习协同过滤算法,系统能根据用户的求职意向提供个性化职位推荐,并在求职列表中展示推荐结果。在后台,系统支持用户自定义设置和管理已爬取数据。旨在构建一个功能全面、易用且具实际应用价值的招聘数据爬虫、可视化分析和推荐系统,提升求职效率与精准度。原创 2024-08-10 12:48:30 · 3268 阅读 · 0 评论 -
大数据技术之Storm的安装与配置(从零开始超级详细!)
Apache Storm作为大数据处理的实时计算系统,在大数据技术领域扮演着重要的角色,其意义主要体现在以下几个方面:实时数据处理: Storm专注于实时流数据处理,具有低延迟和高吞吐量的特性。它能够在数据流中进行实时计算和分析,使得用户能够即时获取和处理数据,满足了许多场景下对于实时性的需求,如金融交易监控、实时报警系统等。可伸缩性和高性能: Storm具备良好的横向扩展能力,能够轻松地扩展到大规模集群,以处理大量数据和并发计算任务。其高性能和可伸缩性使得它适用于处理高负载和高并发的实时数据流。原创 2023-12-13 21:58:54 · 2966 阅读 · 1 评论 -
大数据与云计算:Storm部署配置及运行WordCountTopology (保姆级教程!)
当今世界正处于云计算和大数据的快速发展阶段,而Storm作为一种高效、可靠的实时计算框架,受到了广泛的关注和应用。在这篇文章中,我们将从头开始,将提供一份保姆级教程,帮助进行相关配置和运行WordCountTopology。向您展示如何配置Storm环境。我们将详细介绍所需的软件和工具,并提供逐步指导,帮助您完成安装和配置过程。本人也在不断努力进步,希望自己的博文能够希望对各位有所帮助。原创 2023-09-27 19:25:07 · 2075 阅读 · 2 评论 -
大数据农产品数据分析:基于Python机器学习算法农产品爬虫可视化分析预测系统
本研究致力于设计并实现了一款基于Python的农产品可视化分析预测系统,系统主要利用requests库进行网络数据爬取,BeautifulSoup库解析网页内容,从惠农网获取相关农产品信息。系统功能包括数据价格分析、管理查询等,用户可以根据农产品名称进行机器学习模型的训练与预测,采用sklearn中的多元线性回归模型进行未来一周农产品价格的预测,并通过可视化分析展示结果。原创 2024-05-31 21:43:53 · 4155 阅读 · 12 评论 -
大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统
随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional Neural Network)算法垃圾分类识别系统,以实现自动化高效的垃圾分类。该系统将利用大数据集进行训练,通过深度学习模型提取垃圾图像的特征,从而实现对垃圾进行分类。原创 2024-04-11 18:16:22 · 3002 阅读 · 0 评论 -
大数据舆情评论数据分析:基于Python微博舆情数据爬虫可视化分析系统(NLP情感分析+爬虫+机器学习)
基于Python的微博舆情数据爬虫可视化分析系统,结合了NLP情感分析、爬虫技术和机器学习算法。该系统的主要目标是从微博平台上抓取实时数据,对这些数据进行情感分析,并通过可视化方式呈现分析结果,以帮助用户更好地了解舆情动向和情感倾向。系统首先利用爬虫技术实时抓取微博平台上的相关数据,包括文本内容、评论、转发等信息。接着,应用NLP情感分析技术对这些数据进行情感倾向的判断,识别出其中的正面、负面和中性情绪。随后,通过机器学习算法对情感数据进行分类和聚类分析,以发现潜在的规律和趋势。原创 2024-03-29 13:46:36 · 15623 阅读 · 0 评论 -
基于深度学习LSTM+NLP情感分析电影数据爬虫可视化分析推荐系统(深度学习LSTM+机器学习双推荐算法+scrapy爬虫+NLP情感分析+数据分析可视化)
本项目旨在基于深度学习LSTM(Long Short-Term Memory)模型,基于python编程语言,Vue框架进行前后端分离,结合机器学习双推荐算法、scrapy爬虫技术、PaddleNLP情感分析以及可视化技术,构建一个综合的电影数据爬虫可视化+NLP情感分析推荐系统。通过该系统,用户可以获取电影数据、进行情感分析,并获得个性化的电影推荐,从而提升用户体验和满足用户需求。首先,项目将利用scrapy爬虫框架从多个电影网站上爬取丰富的电影数据,包括电影名称、类型、演员信息、剧情简介等。原创 2024-03-17 21:37:29 · 4734 阅读 · 0 评论 -
大数据旅游数据分析:基于Python旅游数据采集可视化分析推荐系统
本系统主要针对解决获取旅游信息滞后、参加线下旅行社和人工检索时间成本高等问题,运用网络爬虫信息技术设计思想,实现了一个基于Python的旅游信息推荐系统。本系统以Python语言为基础,使用 requests爬虫对去哪儿旅游信息源进行抓取,针对网页信息编写抽取规则,对旅游信息进行必要的过滤和提取,使用MySql对旅游信息进行数据存储。然后使用 Python 开源web框架 Django进行系统搭建,基于旅游信息采用机器学习协同过滤推荐算法完成对用户的旅游信息推荐,完成整个爬取以及数据检索到成功进行旅游推荐。原创 2024-02-29 18:20:43 · 13053 阅读 · 0 评论 -
解决登录Django后台管理时候系统显示:127.0.0.1 拒绝了我们的连接请求(亲测有效!)
今天在用Django框架帮别人做一个基于python机器学习抖音短视频推荐系统项目时候无法正常显示系统功能页面,进入Django后台显示:`127.0.0.1 拒绝了我们的连接请求`,所有工具栏点开页面都是不能正常请求,显示错误信息。把里面的`'django.middleware.clickjacking.XFrameOptionsMiddleware'`,注释或者删除即可。这段代码的作用是将Django框架的点击劫持防护中间件添加到中间件处理链中,以提高应用的安全性。原创 2024-02-02 19:40:02 · 2457 阅读 · 15 评论 -
基于SpringBoot+Vue学科竞赛管理系统
基于SpringBoot+Vue学科竞赛管理系统是一个基于B/S模式系统,采用SSM框架,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得基于SpringBoot+Vue学科竞赛管理系统管理工作系统化、规范化。本系统的使用使管理人员从繁重的工作中解脱出来,实现无纸化办公,能够有效的提高基于SpringBoot+Vue学科竞赛管理系统管理效率。原创 2024-02-01 14:02:16 · 1504 阅读 · 0 评论 -
基于大数据机器学习TF-IDF 算法+SnowNLP的智慧旅游数据分析可视化推荐系统
基于机器学习TF-IDF 算法SnowNLP大数据的智慧旅游数据分析可视化推荐系统通过数据采集、数据清洗、数据分析、数据可视化的技术,对景区数据进行爬取和收集。以旅游景点数据为基础分析景区热度,挖掘客流量、景区评价等信息,并对分析的结果进行统计。智慧旅游数据分析系统拟实现景区热度、景区展示、游客统计、景区评价、旅游路线等部分。拟定景区热度通过热力图展示,客流量、景区评价情感分析,景点路线推荐等数据通过折线图、饼图等形式呈现出来,推出各景区旅游路线,并将景区的特色场景展现给游客。原创 2024-01-03 19:47:44 · 2972 阅读 · 0 评论 -
大数据农业数据分析:基于Python机器学习算法农业数据可视化分析预测系统(随机森林算法+XGBoost算法)
基于python机器学习XGBoost算法农业数据可视化分析预测系统,旨在帮助农民和相关从业者更好地预测农作物产量,以优化农业生产。该系统主要包括四个功能模块。首先,农作物数据可视化模块利用Echarts、Ajax、Flask、PyMysql技术实现了可视化展示农作物产量相关数据的功能。其次,产量预测模块使用pandas、numpy等技术,通过对气象和农作物产量关系数据集的分析和训练,实现了对农作物产量的预测功能。该模块可以对当前或未来某一时间段的农作物产量进行预测,并提供预测结果的可视化展示。原创 2024-01-12 14:34:23 · 4253 阅读 · 0 评论 -
软件开发可行性分析——健康食谱小程序
软件开发可行性分析是从技术、经济、工程等角度对项目进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会环境影响进行科学预测,为项目决策提供公正、可靠、科学的软件咨询意见。主要从经济、技术、社会环境等方面分析所给出的解决方案是否可行,当解决方案可行并有一定的经济效益和/或社会效益是才开始真正的基于计算机的系统的开发。可行性研究实质上是要进行一次大大压缩简化了的系统分析和设计的过程,也就是在较高层次上以较抽象的方式进行的系统分析和设计的过程。原创 2023-04-05 14:00:00 · 3774 阅读 · 1 评论 -
大数据机器学习:基于Django机器学习算法房源可视化分析推荐系统的设计与实现
基于Django协同过滤算法的房可视化分析推荐系统结合了大数据爬虫、机器学习算法、数据分析和数据可视化技术,旨在提供对房屋信息的全面分析和个性化推荐。系统的前端采用了HTML、CSS 和 JavaScript 技术,利用 Echarts实现数据可视化,并整合了百度地图的热力图功能,以更直观的方式展示数据。后端部分完全基于Django 框架开发,使用 MySQL作为主要数据库存储数据。推荐系统采用了协同过滤算法,其中包括基于用户行为和基于物品相似性的推荐算法,以提供用户个性化的房屋推荐。原创 2023-12-04 12:10:26 · 2021 阅读 · 0 评论 -
大数据区块链——基于hyperleger fabric区块链的校园化妆品交易平台搭建(超详细讲解及源码)
搭建一个基于Fabirc区块链的化妆品二手交易平台,学生以学院为单位(=>Org=>peer节点)加盟该平台;学生使用客户端连接本组织的peer节点参与交易。可以售卖化妆品、也可以购买化妆品;阅读过管理员平台公告后进入登录页面,学生通过学号认证后通过登录,学生在个人中心可以查看所有可交易的化妆品也可以查看自己的交易情况是否已经完成,也可以注册平台个人账号进行商品评论和交流查看个人信息,不但可以交易平台的资产也可以添加我的售卖,自己成为卖家;用户可以根据自己的需求选择不同的化妆品类型比如口红、香水、面部护理等原创 2022-11-08 23:54:58 · 7804 阅读 · 28 评论 -
大数据SpringBoot|基于SpringBoot+MyBatis框架健身房管理系统
本文基于Spring Boot和MyBatis框架,设计并实现了一款综合功能强大的健身房管理系统。该系统涵盖了会员卡查询、会员管理、员工管理、器材管理以及课程管理等核心功能,并且提供了可视化图表展示功能。通过整合Spring Boot和MyBatis框架,本系统不仅具备了高效的开发能力和稳定的性能,而且实现了功能完备且用户友好的管理界面。本文详细阐述了系统的设计思路、关键功能模块的实现过程以及可视化图表的呈现方式,为构建现代化健身房管理系统提供了一种可行的解决方案。原创 2023-12-01 15:40:40 · 1621 阅读 · 0 评论 -
大数据可视化/算法推荐/情感分析——基于Django电影评论数据可视化分析推荐系统
采用Python和Django构建。通过爬取豆瓣电影评论数据,利用数据清洗和处理技术,建立了一个全面的电影信息数据库。使用Python中强大的数据处理库进行统计分析,将结果以直观的可视化图表展示,深入挖掘用户对电影的评价与趋势。基于分析结果,我们设计了推荐算法,通过Django搭建的Web界面向用户推荐个性化的电影选择。该项目结合了大数据、数据可视化和机器学习推荐算法的技术,为电影爱好者提供了更智能、直观的电影推荐体验,展示了Python在构建复杂系统中的强大应用能力。原创 2023-12-12 00:25:37 · 2849 阅读 · 0 评论 -
大数据可视化——基于Python豆瓣电影数据可视化分析系统
本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与票房表现的工具。项目的关键步骤包括数据采集、数据清洗、数据分析与可视化展示。经过对一系列测试结果的有效分析,本平台开发系统符合用户的要求和需求。所有的基本功能齐全,可视化展示效果好,服务运行稳定,操作起来简单方便,测试系统性能、整体设计和代码逻辑都很Nice!原创 2023-12-06 19:20:10 · 5673 阅读 · 0 评论 -
数据安全与网络安全——基于php+MySql实现简易留言板(附全资料 超级详细!)
这篇文章是基于PHP和MySQL实现的一个简易留言板。该留言板具有用户注册、登录、发表留言以及查看留言等功能。首先,用户可以通过注册功能创建自己的账号,然后使用该账号进行登录。登录成功后,用户可以发表留言,并且可以查看自己和其他用户发表的留言。在留言的管理方面,网站管理员可以对留言进行审核和删除操作。此外,文章还介绍了如何使用XAMPP工具包来搭建PHP运行环境和MySQL数据库环境,并提供了代码实现的详细步骤以及相应的注意事项。本文所介绍的简易留言板具有良好的代码逻辑和页面展示效果。原创 2023-09-30 21:40:19 · 3473 阅读 · 19 评论 -
大数据SpringBoot|基于SpringBoot+SSM框架的迷你仿天猫商城购物系统
迷你仿天猫商城是一个基于SpringBoot+SSM+MyBatis框架的综合性B2C电商平台,需求设计主要参考天猫商城的购物流程:用户从注册开始,到完成登录,浏览商品,加入购物车,进行下单,确认收货,评价等一系列操作。 作为模拟天猫商城系统的核心组成部分之一,采用SSM框架的天猫数据管理后台包含商品管理,订单管理,类别管理,用户管理和交易额统计等模块,实现了对商城的一站式管理和维护。原创 2023-11-27 16:50:07 · 1875 阅读 · 12 评论