
自然语言处理
文章平均质量分 91
星川皆无恙
大数据技术领域优质创作者 阿里云开发Clouder技能认证 持续更新各种大数据技术讲解及优质项目 苦尽甘来时,我再跟你讲来时的路
展开
-
大数据k-means聚类算法:基于k-means聚类算法+NLP微博舆情数据爬虫可视化分析推荐系统
K-means聚类算法是一种常用的文本数据分析技术,通过对微博内容进行聚类,可以将相似主题或内容的微博归为同一类别,从而为用户提供更加个性化的新闻推荐服务。K-means聚类算法是一种无监督学习算法,其主要目标是将数据集中的样本划分为K个不同的簇,使得同一簇内的样本彼此相似度较高,而不同簇之间的样本相似度较低。在微博舆情分析系统中,我们可以将微博内容视作数据集中的样本,通过K-means算法将微博内容进行聚类,然后根据用户输入的关键词或内容,推荐属于同一簇的微博内容。原创 2025-01-24 18:46:07 · 2473 阅读 · 0 评论 -
大数据舆情评论数据分析:基于Python微博舆情数据爬虫可视化分析系统(NLP情感分析+爬虫+机器学习)
基于Python的微博舆情数据爬虫可视化分析系统,结合了NLP情感分析、爬虫技术和机器学习算法。该系统的主要目标是从微博平台上抓取实时数据,对这些数据进行情感分析,并通过可视化方式呈现分析结果,以帮助用户更好地了解舆情动向和情感倾向。系统首先利用爬虫技术实时抓取微博平台上的相关数据,包括文本内容、评论、转发等信息。接着,应用NLP情感分析技术对这些数据进行情感倾向的判断,识别出其中的正面、负面和中性情绪。随后,通过机器学习算法对情感数据进行分类和聚类分析,以发现潜在的规律和趋势。原创 2024-03-29 13:46:36 · 15623 阅读 · 0 评论 -
图数据库Neo4j实战(全网最详细教程)
知识图谱,作为人工智能和语义网技术的重要组成部分,其核心在于将现实世界的对象和概念以及它们之间的多种关系以图形的方式组织起来。它不仅仅是一种数据结构,更是一种知识的表达和存储方式,能够为机器学习提供丰富、结构化的背景知识,从而提升算法的理解和推理能力。在人工智能领域,知识图谱的重要性不言而喻。它提供了一种机器可读的知识表达方式,使计算机能够更好地理解和处理复杂的人类语言和现实世界的关系。通过构建知识图谱,人工智能系统可以更有效地进行知识的整合、推理和查询,从而在众多应用领域发挥重要作用。原创 2023-01-07 19:12:42 · 75057 阅读 · 11 评论 -
基于深度学习LSTM+NLP情感分析电影数据爬虫可视化分析推荐系统(深度学习LSTM+机器学习双推荐算法+scrapy爬虫+NLP情感分析+数据分析可视化)
本项目旨在基于深度学习LSTM(Long Short-Term Memory)模型,基于python编程语言,Vue框架进行前后端分离,结合机器学习双推荐算法、scrapy爬虫技术、PaddleNLP情感分析以及可视化技术,构建一个综合的电影数据爬虫可视化+NLP情感分析推荐系统。通过该系统,用户可以获取电影数据、进行情感分析,并获得个性化的电影推荐,从而提升用户体验和满足用户需求。首先,项目将利用scrapy爬虫框架从多个电影网站上爬取丰富的电影数据,包括电影名称、类型、演员信息、剧情简介等。原创 2024-03-17 21:37:29 · 4734 阅读 · 0 评论 -
深度学习自然语言处理(NLP)模型BERT:从理论到Pytorch实战
BERT(Bidirectional Encoder Representations from Transformers)是一种基于深度学习的自然语言处理(NLP)模型。它是由Google在2018年提出的,采用了Transformer架构,并在大规模语料库上进行了预训练。BERT的特点之一是其双向(Bidirectional)处理能力,它能够同时考虑到句子中所有单词的上下文,而不仅仅是单词之前或之后的部分。这种双向性使得BERT在许多NLP任务中表现出色,例如文本分类、问答和命名实体识别等。原创 2024-02-09 19:53:48 · 27254 阅读 · 33 评论 -
大数据知识图谱之深度学习:基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统
基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统通过构建医疗领域的知识图谱来实现计算机的深度学习,并且能够实现自动问答的功能。本次的内容研究主要是通过以Python技术来对医疗相关内容进行数据的爬取,通过爬取足量的数据来进行知识图谱的的搭建,基于Python语言通过echarts、Neo4j来实现知识图谱的可视化。通过智慧问答的方式构建出以BERT+LSTM+CRF的深度学习识别模型,从而完成对医疗问句主体的识别,构建出数据集以及实现文本的训练。通过Django来进行web网页的开发原创 2024-02-01 20:45:19 · 16302 阅读 · 0 评论 -
基于大数据机器学习TF-IDF 算法+SnowNLP的智慧旅游数据分析可视化推荐系统
基于机器学习TF-IDF 算法SnowNLP大数据的智慧旅游数据分析可视化推荐系统通过数据采集、数据清洗、数据分析、数据可视化的技术,对景区数据进行爬取和收集。以旅游景点数据为基础分析景区热度,挖掘客流量、景区评价等信息,并对分析的结果进行统计。智慧旅游数据分析系统拟实现景区热度、景区展示、游客统计、景区评价、旅游路线等部分。拟定景区热度通过热力图展示,客流量、景区评价情感分析,景点路线推荐等数据通过折线图、饼图等形式呈现出来,推出各景区旅游路线,并将景区的特色场景展现给游客。原创 2024-01-03 19:47:44 · 2972 阅读 · 0 评论 -
大数据深度学习Pytorch 最全入门介绍,Pytorch入门看这一篇就够了
本文通过详细且实践性的方式介绍了 PyTorch 的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。这篇文章通过详细且实践性的方式介绍了 PyTorch 的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。我们利用 PyTorch 从头到尾完成了一个完整的神经网络训练流程,并在 CIFAR10 数据集上测试了网络的性能。原创 2023-12-25 15:53:06 · 1139 阅读 · 10 评论 -
大数据机器学习深入Scikit-learn:掌握Python最强大的机器学习库
Scikit-learn是一个强大且易用的Python库,它为我们提供了一整套的机器学习工具,可以用于解决从数据预处理,到模型训练,再到模型评估和参数调优的全流程任务。Scikit-learn的广泛应用,不仅仅因为它的功能强大,更因为它的设计理念——统一的API,使得我们可以快速地切换不同的模型和算法,而不需要对代码进行大的修改。这种灵活性和易用性,使得Scikit-learn成为了Python机器学习库的首选。原创 2023-12-25 15:44:23 · 2078 阅读 · 37 评论 -
大数据机器学习-梯度下降:从技术到实战的全面指南
梯度下降(Gradient Descent)是一种在机器学习和深度学习中广泛应用的优化算法。该算法的核心思想非常直观:找到一个函数的局部最小值(或最大值)通过不断地沿着该函数的梯度(gradient)方向更新参数。简单地说,梯度下降是一个用于找到函数最小值的迭代算法。在机器学习中,这个“函数”通常是损失函数(Loss Function),该函数衡量模型预测与实际标签之间的误差。通过最小化这个损失函数,模型可以“学习”到从输入数据到输出标签之间的映射关系。原创 2023-12-18 19:19:29 · 2007 阅读 · 21 评论 -
大数据知识图谱——基于知识图谱+深度学习的大数据(KBQA)NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
通过搭建一个医疗领域知识图谱,并以该知识图谱完成自动问答与分析服务。 基于知识图谱+flask的KBQA医疗问答系统以neo4j作为存储,基于传统规则的方式完成了知识问答,并最终以关键词执行cypher查询,并返回相应结果查询语句作为问答。后面我又设计了一个简单的基于 Flask 的聊天机器人应用,利用nlp自然语言处理,通过医疗AI助手根据用户的问题返回结果,用户输入和系统返回的输出结果都会一起自动存储到sql数据库。后面又封装了深度学习模型完成一个完整基于深度学习知识图谱问答可视化系统。原创 2023-02-21 20:45:00 · 41789 阅读 · 258 评论 -
大数据机器学习与深度学习——回归模型评估
回归模型的性能的评价指标主要有:MAE(平均绝对误差)、MSE(平均平方误差)、RMSE(平方根误差)、R2_score。但是当量纲不同时,RMSE、MAE、MSE难以衡量模型效果好坏,这就需要用到R2_score。原创 2023-12-13 22:46:16 · 3893 阅读 · 0 评论 -
大数据与人工智能——神经网络是如何工作的?
神经网络训练和学习的过程其实就是对模型参数进行不断调优、减少预测损失值过程。经过充分训练后,模型能够从输入数据中学习到有效的特征表示和权重分配,从而能够对未见过的数据进行准确的预测。训练完成的神经网络模型可以应用于各种实际问题。原创 2023-12-13 22:32:41 · 2254 阅读 · 0 评论 -
开源与闭源:大模型时代的技术交融与商业平衡
开源和闭源,两种截然不同的开发模式,对于大模型的发展有着重要影响。开源让技术共享,吸引了众多人才加入,推动了大模的创新。而闭源则保护了商业利益和技术优势,为大模型的商业应用提供了更好的保障。在数字化时代,开源与闭源软件的辩论一直是技术界的热门话题。开源是否能够带来更好的创新与合作?闭源是否能够保护商业利益与技术安全?未来的大模型发展又会走向哪一边?原创 2023-11-18 00:07:22 · 680 阅读 · 0 评论 -
机器学习与深度学习——基于潜在语义分析(LSA)的文档相似度计算
基于潜在语义分析(LSA)是一种使用数学和统计方法来分析文本数据的技术。该技术可用于发现文本之间的关系,以及为文本提供有关其含义的更深层次的信息。原创 2023-06-19 11:38:14 · 1427 阅读 · 0 评论 -
成功解决:numpy.ndarray size changed, may indicate binary incompatibility. Expected 96 from C header, got
我在利用潜在语义分析(LSA)对docx文档进行文本相似度分析时候出现报错:`numpy.ndarray size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject`该错误通常出现在使用Numpy时,因为版本不兼容或编译问题导致的二进制不兼容。其中一个库可能是使用旧版本的Numpy编译的,可以尝试使用新版本的Numpy。或者降低gensim版本找到兼容版本也可以成功解决原创 2023-05-23 22:27:54 · 4549 阅读 · 1 评论 -
机器学习与深度学习——通过奇异值分解算法压缩图片(完整源码)
奇异值分解(Singular Value Decomposition,SVD)是一种重要的线性代数方法,用于将一个矩阵分解成三个部分的乘积形式。它的应用非常广泛,包括数据降维、图像压缩、信号处理等领域。原创 2023-05-22 20:40:24 · 2718 阅读 · 0 评论