
大数据可视化
文章平均质量分 94
《大数据可视化》专栏致力于探讨大数据时代中数据可视化的重要性和创新。深入研究可视化工具、技术和最佳实践,帮助读者更好地理解和交流复杂的数据信息。从图表设计到交互式可视化,涵盖了各种技术和方法,以展示数据背后的故事。本专栏提供实用的教程、案例研究和设计原则,将大数据转化为清晰、有洞察力的可视化呈现。
星川皆无恙
大数据技术领域优质创作者 阿里云开发Clouder技能认证 持续更新各种大数据技术讲解及优质项目 苦尽甘来时,我再跟你讲来时的路
展开
-
大数据产品销售数据分析:基于Python机器学习产品销售数据爬虫可视化分析预测系统设计与实现
本项目旨在设计与实现一个基于Python机器学习的产品销售数据爬虫可视化分析预测系统,结合现代数据技术,提升企业产品销售管理的智能化与数字化水平。该系统主要包括数据管理和后台管理两个核心模块,其中数据管理部分涵盖数据爬取、数据存储、数据分析、数据可视化以及基于多元线性回归的销量预测五大功能模块。原创 2025-05-06 14:40:28 · 1350 阅读 · 0 评论 -
大数据农产品数据分析:基于Python机器学习算法农产品爬虫可视化分析预测系统
本研究致力于设计并实现了一款基于Python的农产品可视化分析预测系统,系统主要利用requests库进行网络数据爬取,BeautifulSoup库解析网页内容,从惠农网获取相关农产品信息。系统功能包括数据价格分析、管理查询等,用户可以根据农产品名称进行机器学习模型的训练与预测,采用sklearn中的多元线性回归模型进行未来一周农产品价格的预测,并通过可视化分析展示结果。原创 2024-05-31 21:43:53 · 4155 阅读 · 12 评论 -
大数据旅游数据分析:基于Python旅游数据采集可视化分析推荐系统
本系统主要针对解决获取旅游信息滞后、参加线下旅行社和人工检索时间成本高等问题,运用网络爬虫信息技术设计思想,实现了一个基于Python的旅游信息推荐系统。本系统以Python语言为基础,使用 requests爬虫对去哪儿旅游信息源进行抓取,针对网页信息编写抽取规则,对旅游信息进行必要的过滤和提取,使用MySql对旅游信息进行数据存储。然后使用 Python 开源web框架 Django进行系统搭建,基于旅游信息采用机器学习协同过滤推荐算法完成对用户的旅游信息推荐,完成整个爬取以及数据检索到成功进行旅游推荐。原创 2024-02-29 18:20:43 · 13053 阅读 · 0 评论 -
大数据招聘信息数据分析:基于Python网络爬虫的IT招聘就业岗位数据分析可视化推荐系统
本项目旨在开发一个基于Python网络爬虫技术的IT招聘就业岗位可视化分析推荐系统。数据来源于Boss直聘招聘网站,采集到的各种岗位数据信息量合计在70万左右,数据精确真实可靠,本项目主要利用selenium、requests爬虫以及BeautifulSoup、numpy和Pandas等库进行数据的获取与分析处理。除此之外,项目还包括词云生成、数据分析、精准分析岗位算法推荐以及多维度薪资预测等功能,旨在为求职者提供全面的就业信息支持。原创 2024-02-23 17:01:11 · 5183 阅读 · 0 评论 -
大数据可视化/算法推荐/情感分析——基于Django电影评论数据可视化分析推荐系统
采用Python和Django构建。通过爬取豆瓣电影评论数据,利用数据清洗和处理技术,建立了一个全面的电影信息数据库。使用Python中强大的数据处理库进行统计分析,将结果以直观的可视化图表展示,深入挖掘用户对电影的评价与趋势。基于分析结果,我们设计了推荐算法,通过Django搭建的Web界面向用户推荐个性化的电影选择。该项目结合了大数据、数据可视化和机器学习推荐算法的技术,为电影爱好者提供了更智能、直观的电影推荐体验,展示了Python在构建复杂系统中的强大应用能力。原创 2023-12-12 00:25:37 · 2849 阅读 · 0 评论 -
大数据机器学习:基于Django机器学习算法房源可视化分析推荐系统的设计与实现
基于Django协同过滤算法的房可视化分析推荐系统结合了大数据爬虫、机器学习算法、数据分析和数据可视化技术,旨在提供对房屋信息的全面分析和个性化推荐。系统的前端采用了HTML、CSS 和 JavaScript 技术,利用 Echarts实现数据可视化,并整合了百度地图的热力图功能,以更直观的方式展示数据。后端部分完全基于Django 框架开发,使用 MySQL作为主要数据库存储数据。推荐系统采用了协同过滤算法,其中包括基于用户行为和基于物品相似性的推荐算法,以提供用户个性化的房屋推荐。原创 2023-12-04 12:10:26 · 2021 阅读 · 0 评论 -
大数据可视化——基于Python豆瓣电影数据可视化分析系统
本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与票房表现的工具。项目的关键步骤包括数据采集、数据清洗、数据分析与可视化展示。经过对一系列测试结果的有效分析,本平台开发系统符合用户的要求和需求。所有的基本功能齐全,可视化展示效果好,服务运行稳定,操作起来简单方便,测试系统性能、整体设计和代码逻辑都很Nice!原创 2023-12-06 19:20:10 · 5673 阅读 · 0 评论 -
机器学习与深度学习——自定义函数进行线性回归模型分析(波士顿房价)
使用梯度下降算法训练线性回归模型的基本思路是:先随机初始化模型参数θ,然后通过迭代调整参数θ,使得损失函数的值尽量小。模型训练完成后,我们可以用训练好的模型对新的数据进行预测。原创 2023-07-09 13:51:54 · 1358 阅读 · 1 评论