
知识图谱
文章平均质量分 95
星川皆无恙
大数据技术领域优质创作者 阿里云开发Clouder技能认证 持续更新各种大数据技术讲解及优质项目 苦尽甘来时,我再跟你讲来时的路
展开
-
大数据知识图谱之深度学习:基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统
基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统通过构建医疗领域的知识图谱来实现计算机的深度学习,并且能够实现自动问答的功能。本次的内容研究主要是通过以Python技术来对医疗相关内容进行数据的爬取,通过爬取足量的数据来进行知识图谱的的搭建,基于Python语言通过echarts、Neo4j来实现知识图谱的可视化。通过智慧问答的方式构建出以BERT+LSTM+CRF的深度学习识别模型,从而完成对医疗问句主体的识别,构建出数据集以及实现文本的训练。通过Django来进行web网页的开发原创 2024-02-01 20:45:19 · 16302 阅读 · 0 评论 -
一文详解自然语言处理两大任务与代码实战:NLU与NLG
自然语言处理(NLP)涵盖了从基础理论到实际应用的广泛领域,本文深入探讨了NLP的关键概念,包括词向量、文本预处理、自然语言理解与生成、统计与规则驱动方法等,为读者提供了全面而深入的视角。自然语言处理的主要任务是让计算机能够像人类一样理解和生成自然语言。它能够让机器读懂人类的语言,使得人们与计算机的交互更加自然流畅。这不仅可以大大提高人机交互的效率,而且也为许多行业如客服、医疗、教育等提供了极大的便利。原创 2023-12-28 15:54:02 · 2158 阅读 · 2 评论 -
大数据深度解析NLP文本摘要技术:定义、应用与PyTorch实战
在本文中,我们深入探讨了自然语言处理中的文本摘要技术,从其定义、发展历程,到其主要任务和各种类型的技术方法。文章详细解析了抽取式、生成式摘要,并为每种方法提供了PyTorch实现代码。最后,文章总结了摘要技术的意义和未来的挑战,强调了其在信息过载时代的重要性。原创 2023-12-24 23:36:10 · 2618 阅读 · 12 评论 -
大数据知识图谱解码:从核心概念到技术实战
知识图谱是近年来人工智能和数据科学领域的焦点。本文深入探索了知识图谱的核心概念、发展历程、研究内容以及其在表示、存储、获取、构建和推理方面的技术细节。结合Python和PyTorch示例代码,文章旨在为读者提供一个全面、深入且实用的知识图谱概览,帮助广大技术爱好者和研究者深化对此领域的认识。原创 2023-12-21 15:18:18 · 3216 阅读 · 23 评论 -
图数据库Neo4j实战(全网最详细教程)
知识图谱,作为人工智能和语义网技术的重要组成部分,其核心在于将现实世界的对象和概念以及它们之间的多种关系以图形的方式组织起来。它不仅仅是一种数据结构,更是一种知识的表达和存储方式,能够为机器学习提供丰富、结构化的背景知识,从而提升算法的理解和推理能力。在人工智能领域,知识图谱的重要性不言而喻。它提供了一种机器可读的知识表达方式,使计算机能够更好地理解和处理复杂的人类语言和现实世界的关系。通过构建知识图谱,人工智能系统可以更有效地进行知识的整合、推理和查询,从而在众多应用领域发挥重要作用。原创 2023-01-07 19:12:42 · 75057 阅读 · 11 评论 -
大数据知识图谱——基于知识图谱+深度学习的大数据(KBQA)NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
通过搭建一个医疗领域知识图谱,并以该知识图谱完成自动问答与分析服务。 基于知识图谱+flask的KBQA医疗问答系统以neo4j作为存储,基于传统规则的方式完成了知识问答,并最终以关键词执行cypher查询,并返回相应结果查询语句作为问答。后面我又设计了一个简单的基于 Flask 的聊天机器人应用,利用nlp自然语言处理,通过医疗AI助手根据用户的问题返回结果,用户输入和系统返回的输出结果都会一起自动存储到sql数据库。后面又封装了深度学习模型完成一个完整基于深度学习知识图谱问答可视化系统。原创 2023-02-21 20:45:00 · 41789 阅读 · 258 评论 -
Protege 使用教程(详细讲解 入门简单易懂)
Protege是一款强大的本体编辑工具,用于创建和维护本体(Ontology)。本体是一种形式化的知识表示,用于描述现实世界中的实体和它们之间的关系。Protege支持用户通过直观的图形界面创建、编辑和管理本体,而无需深入了解本体语言的复杂性。关于Proteged的使用教程,帮助大家更好的使用protege这个知识图谱软件,里面有详细内容讲解,入门简单易懂。原创 2022-11-09 00:17:28 · 26736 阅读 · 3 评论