ollama 提示403

原因分析:

1,在安装ollama服务的本机运行

2,在其他机器访问安装ollama的机器

检查系统配置:不是的,改为一致的

变量名:OLLAMA_HOST

变量值:0.0.0.0

变量名:OLLAMA_ORIGINS

变量值:*

<think>嗯,用户想在VSCode里接入并运行本地的DeepSeek模型。首先,我需要回想一下之前看到的引用内容。引用[1]、[2]、[3]都提到了使用Continue插件来连接本地部署的DeepSeek模型,特别是通过ollama来运行。 用户的需求分步骤的话,可能需要先安装必要的软件,比如VSCodeollama。然后确保本地已经部署了DeepSeek模型。接着,在VSCode里安装Continue插件,配置相关的模型参数,比如基础URL和模型名称。可能还需要注意端口号是否正确,以及API密钥的处理,如果不需要的话设为空字符串。 用户可能遇到的常见问题包括模型未启动、端口错误或者配置不正确。需要提醒他们检查ollama的服务状态,确认模型是否正确加载,以及配置文件里的参数是否匹配。此外,权限问题也可能导致连接失败,特别是如果ollama运行在服务器上,可能需要调整防火墙设置。 另外,用户可能不太清楚如何验证配置是否成功,所以建议他们通过简单的代码补全或对话功能来测试。如果遇到问题,查看日志会有帮助。可能还需要指导他们如何获取和部署DeepSeek模型,特别是如果他们还没有在ollama上正确安装的话。 总结下来,步骤大致是:安装VSCode和Continue插件,部署ollama和DeepSeek模型,配置Continue的config.json,然后测试使用。需要确保每个步骤都详细说明,避免遗漏关键点,比如配置文件的路径和内容格式。同时,常见问题部分要覆盖主要的错误情况,帮助用户自行排查。</think>以下是在VSCode中接入本地DeepSeek模型的详细操作指南: ### 一、环境准备 1. 安装VSCode(需1.75+版本) 2. 部署Ollama服务(推荐v0.1.25+) 3. 下载DeepSeek模型文件(如`deepseek-coder:6.7b`) 4. 确保本地已运行Ollama服务: ```bash ollama serve ``` ### 二、配置步骤 1. **安装Continue插件** - VSCode扩展市场搜索"Continue" - 点击安装(插件ID:`continue.continue`) 2. **修改配置文件** - 打开`~/.continue/config.json` - 添加DeepSeek配置段: ```json { "models": [{ "title": "DeepSeek Local", "model": "deepseek-coder", "apiBase": "http://localhost:11434", "apiKey": "ollama", "contextLength": 4096 }] } ``` ### 三、验证连接 1. 新建`.test.py`文件 2. 使用快捷键`Ctrl+Shift+P`调出命令面板 3. 输入`/ask`后提问测试: ``` /ask 请解释快速排序算法 ``` $$T(n) = O(n \log n)$$ ### 四、常见问题排查 | 问题现象 | 解决方案 | |---------|---------| | 连接超时 | 检查Ollama服务状态:`curl http://localhost:11434` | | 模型未响应 | 确认模型加载:`ollama list` | | API报错403 | 验证`apiKey`字段设置为"ollama" | ### 五、进阶配置 1. 多模型切换:在config.json中添加多个模型配置 2. 自定义提示模板:通过`prompts`字段修改交互方式 3. 上下文优化:调整`contextLength`参数提升长代码理解能力[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值