NVIDIA TAO 工具套件5.3.0学习介绍及操作-01

什么是 NVIDIA TAO 工具套件?

        NVIDIA TAO 工具套件基于 TensorFlow 和 PyTorch 构建,是 NVIDIA TAO 框架的低代码版本,通过抽象出 AI/深度学习框架的复杂性来加速模型训练过程。TAO 工具套件让您利用迁移学习的强大功能和自己的数据对预训练 NVIDIA 模型进行微调,并针对推理进行优化,无需具备 AI 专业知识或大型训练数据集。

        从零开始创建 AI/机器学习模型需要海量的数据和一大批数据科学家。现在,您可以通过迁移学习加快模型开发过程,迁移学习是一种热门技术,可以将现有神经网络模型中已经学到的特征提取到新的自定义模型中。

TAO框架主要优势 

轻松训练模型

        TAO 工具套件是一种低代码解决方案,可让您使用 Jupyter Notebook 训练模型,而无需掌握 AI 框架专业知识。

构建高度准确的 AI

        使用NVIDIA 预训练模型以及模型架构为用例创建高度准确的自定义 AI 模型。

优化推理

        通过优化推理模型,超越定制并实现高达 4 倍的性能。

轻松部署

        通过用于视觉 AI 的 NVIDIA DeepStream、用于语音 AI 的 Riva 以及 Triton 推理服务器™,部署经过优化的模型。

推理性能 

        从使用 NVIDIA Jetsons 的边缘到使用 NVIDIA Ampere 架构 GPU 的云,跨平台使用 NVIDIA 预训练模型释放峰值推理性能。有关批量大小和其他模型的更多详细信息,请查看详细性能数据表

Xavier NX

AGX Xavier

AGX Orin

T4

A2

A30

A100

模型架构

推理归结

精度

模型准确率

GPU + 2*DLA(FPS)

GPU + 2*DLA(FPS)

GPU + 2*DLA(FPS)

GPU(FPS)

GPU (FPS)

GPU (FPS)

GPU (FPS)

行人检测

960x544x3

INT8

80% mAP

263

418

1294

1064

581

3160

6245

3D 姿态估计

256x192x3

FP16

8 像素误差

147

235

711

713

471

2242

4179

姿态动作分类

3x300x34x1

FP16

90%

87

150

262

376

211

1122

2145

DashCamNet

960x544x3

INT8

84% mAP

423

670

1895

1676

865

4900

9500

车牌识别

96x48x3

FP16

98% mAP

706

1190

4118

3959

2180

12400

27200

动作识别 2D

224x224x96

FP16

83%

245

471

1577

1897

1044

6000

12600

人员语义分割

960x544x3

FP16

87% mIoU

199

356

673

1027

631

2862

5745

使用案例 

领先使用者 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵追慕者

您的支持是我写作分享最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值