问题背景
在使用face_recognition进行人脸识别的时候,自己电脑上配置的有显卡加速环境,但是发现速度并没有很快,于是自己思考,在配置环境OK有cuda加速的情况下会比较快吗,如何设置face_recognition库使其在进行人脸识别的时候是调用cpu还是GPU呢?经过调研分析,发现在使用 CUDA 加速的情况下,face_recognition
库的人脸识别速度确实会更快。face_recognition
是基于 dlib
库构建的,而 dlib
支持 CUDA 加速以利用 GPU 提升计算性能。通过正确配置,您可以让 face_recognition
使用 GPU 进行人脸识别,从而显著提高处理速度,特别是在处理大量图像时。以下是详细的步骤和说明,帮助您在使用 CUDA 加速的情况下配置 face_recognition
库:
1.前提条件
- CUDA 兼容的 NVIDIA GPU:确保您的系统中安装了支持 CUDA 的 NVIDIA 显卡。
- CUDA Toolkit:下载并安装 CUDA Toolkit。
- cuDNN:下载并安装与您 CUDA Toolkit 版本兼容的 cuDNN 库。
- CMake:确保系统中已安装 CMake。
- Python:建议使用 Python 3.6 及以上版本。
2.安装 CUDA 和 cuDNN
安装 CUDA Toolkit
1.前往 CUDA Toolkit 下载页面。
2.根据您的操作系统和硬件选择合适的版本,并按照安装指引进行安装。
安装 cuDNN
1.前往 cuDNN 下载页面(需要注册