face_recognition人脸识别库Cuda加速

问题背景

        在使用face_recognition进行人脸识别的时候,自己电脑上配置的有显卡加速环境,但是发现速度并没有很快,于是自己思考,在配置环境OK有cuda加速的情况下会比较快吗,如何设置face_recognition库使其在进行人脸识别的时候是调用cpu还是GPU呢?经过调研分析,发现在使用 CUDA 加速的情况下,face_recognition 库的人脸识别速度确实会更快。face_recognition 是基于 dlib 库构建的,而 dlib 支持 CUDA 加速以利用 GPU 提升计算性能。通过正确配置,您可以让 face_recognition 使用 GPU 进行人脸识别,从而显著提高处理速度,特别是在处理大量图像时。以下是详细的步骤和说明,帮助您在使用 CUDA 加速的情况下配置 face_recognition 库:

1.前提条件

  • CUDA 兼容的 NVIDIA GPU:确保您的系统中安装了支持 CUDA 的 NVIDIA 显卡。
  • CUDA Toolkit:下载并安装 CUDA Toolkit
  • cuDNN:下载并安装与您 CUDA Toolkit 版本兼容的 cuDNN 库。
  • CMake:确保系统中已安装 CMake
  • Python:建议使用 Python 3.6 及以上版本。

2.安装 CUDA 和 cuDNN

安装 CUDA Toolkit

1.前往 CUDA Toolkit 下载页面
2.根据您的操作系统和硬件选择合适的版本,并按照安装指引进行安装。

安装 cuDNN

1.前往 cuDNN 下载页面(需要注册

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵追慕者

您的支持是我写作分享最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值