Python不平衡数据处理库imblearn安装和使用

本文介绍了如何使用imblearn库处理不平衡数据问题,通过示例展示了过采样方法SMOTE和下采样方法ClusterCentroids的使用,帮助改善分类模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般直接pip安装即可,安装不成功可能是因为 没有安装imblearn需要的Python模块,对应安装即可

pip install -U imbalanced-learn

imblearn中的过采样方法: Over-sampling methods — Version 0.9.0 (imbalanced-learn.org)

过采样示例:

>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from imblearn.over_sampling import SMOTE 

# 加载数据集
>>> X, y = make_classification(n_classes=2, class_sep=2, 
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)

# 输出原数据集样本各类别数量
>>> print('Original dataset shape %s' % Counter(y))   
输出:Original dataset shape Counter({1: 900, 0: 100})
#调用SMOTE类中的fit_resample方法重新采样数据集
>>> sm = SMOTE(random_state=42)
>>> X_res, y_res = sm.fit_resample(X, y)  # 数据X的维度只能小于等于两维


# 输出过采样后数据集样本各类别数量
>>> print('Resampled dataset shape %s' % Counter(y_res)) 
输出:Resampled dataset shape Counter({0: 900, 1: 900}) # 过采样后各类别数量

imblearn中的下采样方法:Under-sampling methods — Version 0.9.0 (imbalanced-learn.org)

ClusterCentroids下采样示例 

from collections import Counter
from sklearn.datasets import make_classification
from imblearn.under_sampling import ClusterCentroids 

#加载数据集
X, y = make_classification(n_classes=2, class_sep=2,
weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
print('Original dataset shape %s' % Counter(y))

#采样ClusterCentroids下采样
cc = ClusterCentroids(random_state=42)
X_res, y_res = cc.fit_resample(X, y)
print('Resampled dataset shape %s' % Counter(y_res))
输出结果:
Original dataset shape Counter({1: 900, 0: 100})
Resampled dataset shape Counter({0: 100, 1: 100})

平衡数据处理机器学习中的一个重要问题,特别是在分类任务中,如果同类别的样本数量相差很大,会导致模型预测倾向于多数类,从而影响模型的性能。在Python中,可以通过多种方法处理平衡数据,以下是一些常见的处理手段: 1. 重采样技术:这种方法包括过采样少数类欠采样多数类,或者两者的组合。 - 过采样少数类:使用如`imbalanced-learn`中的`RandomOverSampler`,将少数类样本重复抽取,直到与多数类的样本数量相等或者接近相等。 ```python from imblearn.over_sampling import RandomOverSampler # 假设X是特征数据,y是标签数据 ros = RandomOverSampler(random_state=42) X_resampled, y_resampled = ros.fit_resample(X, y) ``` - 欠采样多数类:使用如`imbalanced-learn`中的`RandomUnderSampler`,随机删除多数类的样本,直到与少数类的样本数量相等或者接近相等。 ```python from imblearn.under_sampling import RandomUnderSampler rus = RandomUnderSampler(random_state=42) X_resampled, y_resampled = rus.fit_resample(X, y) ``` 2. 合成少数类过采样技术(SMOTE):SMOTE是一种创造性的方法,它通过在少数类样本之间插值来生成新的、合成的少数类样本。 ```python from imblearn.over_sampling import SMOTE smote = SMOTE(random_state=42) X_resampled, y_resampled = smote.fit_resample(X, y) ``` 3. 使用同的评估指标:在平衡数据的情况下,传统的准确率可能再适用。可以使用其他指标,如F1分数、ROC AUC、精确度、召回率等。 4. 集成方法:使用集成学习方法,如随机森林、梯度提升机(GBM)、平衡随机森林(Balanced Random Forests)等,这些方法在内部可能自然地处理平衡数据。 5. 修改分类阈值:通过调整分类决策阈值来适应平衡数据,例如在逻辑回归中,可以降低判定为少数类的阈值。 6. 使用特定于任务的方法:例如,在深度学习中,可以使用类权重(class weights)或焦点损失(Focal Loss)等技术来让模型更加关注少数类。 处理平衡数据时,重要的是要结合具体问题的上下文来选择合适的方法,并通过交叉验证来验证所选方法的有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值