模糊关系聚合与邻近性传递性处理
1. 利用OWA算子聚合T - 传递模糊关系
在模糊关系的研究中,OWA(有序加权平均)算子是一种非常实用的工具。它最初由Yager引入,被广泛应用于需要整合多个模糊集信息的场景。
1.1 OWA算子的定义与性质
OWA算子是一个从 $R^n$ 到 $R$ 的映射 $s$,它关联着一个权重向量 $(p_1, p_2, …, p_n)$,其中 $p_i \in [0, 1]$ 且 $\sum_{i = 1}^{n} p_i = 1$。对于输入 $(x_1, x_2, …, x_n)$,OWA算子的输出为 $s(x_1, x_2, …, x_n) = \sum_{i = 1}^{n} p_ix_{(i)}$,这里 $x_{(i)}$ 是 $x_i$ 中第 $i$ 大的值。
并非所有的OWA算子都能聚合T - 传递模糊关系,只有满足次可加性的OWA算子才可以。具体来说,对于一个OWA算子 $s$,它是次可加映射当且仅当对于 $i < j$ 有 $p_i \geq p_j$。
下面是证明过程:
设 $i < n$,对于任意 $a > b$,定义向量 $\vec{x} = (x_1, x_2, …, x_n)$ 和 $\vec{y} = (y_1, y_2, …, y_n)$ 如下:
$x_1 = x_2 = … = x_i = a, x_{i + 1} = … = x_n = b$
$y_1 = y_2 = … = y_{i - 1} = a, y_i = b, y_{i + 1} = a, y_{i + 2} = … = y_n = b$
$s
超级会员免费看
订阅专栏 解锁全文
7178

被折叠的 条评论
为什么被折叠?



